A novel optical method has been developed for the measurement of thermal accommodation coefficients in the temperature-jump regime. The temperature dependence of the resonant frequency of a fused-silica microresonator's whispering-gallery mode is used to measure the rate at which the microresonator comes into thermal equilibrium with the ambient gas. The thermal relaxation time is related to the thermal conductivity of the gas under some simplifying assumptions and measuring this time as a function of gas pressure determines the thermal accommodation coefficient. Using a low-power tunable diode laser of wavelength around 1570 nm to probe a microsphere's whispering-gallery mode through tapered-fiber coupling, we have measured the accommodation coefficients of air, helium, and nitrogen on fused silica at room temperature. In addition, by applying thin-film coatings to the microsphere's surface, we have demonstrated that accommodation coefficients can be measured for various gases on a wide range of modified surfaces using this method.
We have locked a whispering-gallery resonance of a fused-silica microsphere to a frequency-scanning laser. The resonance frequency is modulated by axial compression of the microsphere, and phase-sensitive detection of the fiber-coupled optical throughput is used for locking. Using a laser wavelength of either 1570 nm or 830 nm, we demonstrate a locked tracking range exceeding 30 GHz for a microsphere of 120 GHz free spectral range. This performance has been enabled by an improved compression tuner design that allows coarse tuning over 1 THz and piezoelectric tuning over 80 GHz. Compression modulation rates of up to 13 kHz have also been achieved with this tuner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.