During photosynthesis, CO2 moves from the atmosphere (Ca) surrounding the leaf to the sub-stomatal internal cavities (Ci) through stomata, and from there to the site of carboxylation inside the chloroplast stroma (Cc) through the leaf mesophyll. The latter CO2 diffusion component is called mesophyll conductance (gm), and can be divided in at least three components, that is, conductance through intercellular air spaces (gias), through cell wall (gw) and through the liquid phase inside cells (gliq). A large body of evidence has accumulated in the past two decades indicating that gm is sufficiently small as to significantly decrease Cc relative to Ci, therefore limiting photosynthesis. Moreover, gm is not constant, and it changes among species and in response to environmental factors. In addition, there is now evidence that gliq and, in some cases, gw, are the main determinants of gm. Mesophyll conductance is very dynamic, changing in response to environmental variables as rapid or even faster than stomatal conductance (i.e. within seconds to minutes). A revision of current knowledge on gm is presented. Firstly, a historical perspective is given, highlighting the founding works and methods, followed by a re-examination of the range of variation of gm among plant species and functional groups, and a revision of the responses of gm to different external (biotic and abiotic) and internal (developmental, structural and metabolic) factors. The possible physiological bases for gm, including aquaporins and carbonic anhydrases, are discussed. Possible ecological implications for variable gm are indicated, and the errors induced by neglecting gm when interpreting photosynthesis and carbon isotope discrimination models are highlighted. Finally, a series of research priorities for the near future are proposed.
Foliage photosynthetic and structural traits were studied in 15 species with a wide range of foliage anatomies to gain insight into the importance of key anatomical traits in the limitation of diffusion of CO2 from substomatal cavities to chloroplasts. The relative importance of different anatomical traits in constraining CO2 diffusion was evaluated using a quantitative model. Mesophyll conductance (g m) was most strongly correlated with chloroplast exposed surface to leaf area ratio (S c/S) and cell wall thickness (T cw), but, depending on foliage structure, the overall importance of g m in constraining photosynthesis and the importance of different anatomical traits in the restriction of CO2 diffusion varied. In species with mesophytic leaves, membrane permeabilities and cytosol and stromal conductance dominated the variation in g m. However, in species with sclerophytic leaves, g m was mostly limited by T cw. These results demonstrate the major role of anatomy in constraining mesophyll diffusion conductance and, consequently, in determining the variability in photosynthetic capacity among species.
Drought and salinity (i.e. soil water stress) are the main environmental factors limiting photosynthesis and respiration and, consequently, plant growth. This review summarizes the current status of knowledge on photosynthesis and respiration under water stress. It is shown that diffusion limitations to photosynthesis under most water stress conditions are predominant, involving decreased mesophyll conductance to CO 2 , an important but often neglected process. A general failure of photochemistry and biochemistry, by contrast, can occur only when daily maximum stomatal conductance (g s ) drops below 0.05-0.10 mol H 2 O m À2 s À1 . Because these changes are preceded by increased leaf antioxidant activities (g s below 0.15-0.20 mol H 2 O m À2 s À1 ), it is suggested that metabolic responses to severe drought occur indirectly as a consequence of oxidative stress, rather than as a direct response to water shortage. As for respiration, it is remarkable that the electron partitioning towards the alternative respiration pathway sharply increases at the same g s threshold, although total respiration rates are less affected. Despite the considerable improvement in the understanding of plant responses to drought, several gaps of knowledge are highlighted which should become research priorities for the near future. These include how respiration and photosynthesis interact at severe stress, what are the boundaries and mechanisms of photosynthetic acclimation to water stress and what are the factors leading to different rates of recovery after a stress period. Photosynthesis and respiration responses to drought and salinityBoth drought and salinity stresses reduce the capacity of plants to take up water from the soil (Munns 2002). At present, low water availability is the main environmental factor limiting plant growth and yield worldwide, and global change will likely make water scarcity an even greater limitation to plant productivity across an increasing amount of land (Chaves et al. 2003, Hamdy et al. 2003.The limitation of plant growth imposed by low water availability is mainly due to reductions in plant carbon balance, which is dependent on the balance between photosynthesis and respiration. Both processes are intimately linked. For instance, it has been shown that transgenic plants with modified respiration also alter their photosynthetic behaviour (Dutilleul et al. 2003, Nunes-Nesi et al. 2005, and an increased respiration rate seems necessary for photosynthesis recovery after a period of water stress (Kirschbaum 1988). Of the total Abbreviations -ABA, abscisic acid; Altox, alternative oxidase; A N , light-saturated net photosynthesis; APX, ascorbate perox-
Mesophyll diffusion conductance to CO(2) is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g(m), and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation. New evidence shows that anatomical traits, such as cell wall thickness and chloroplast distribution are amongst the stronger determinants of mesophyll conductance, although rapid variations in response to environmental changes might be regulated by other factors such as aquaporin conductance. Gaps in knowledge that should be research priorities for the near future include: how different is mesophyll conductance among phylogenetically distant groups and how has it evolved? Can mesophyll conductance be uncoupled from regulation of the water path? What are the main drivers of mesophyll conductance? The need for mechanistic and phenomenological models of mesophyll conductance and its incorporation in process-based photosynthesis models is also highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.