The enzyme catechol O-methyltransferase (COMT) catalyzes the transfer of a methyl group from S-adenosylmethionine to dopamine and related catechols. The search for the origin of COMT catalysis has led to different proposals and hypothesis, including the entropic, the NAC and the compression proposals as well as the more reasonable electrostatic idea. Thus it is important to understand the catalytic power of this enzyme and to examine the validity of different proposals and in particularly the repeated recent implication of the compression idea. The corresponding analysis should be done by well-defined physically based analysis that involves computations rather than circular interpretations of experimental results. Thus we explore here the origin of the catalytic efficiency of COMT by using the empirical valence bond and the linear response approximation approaches. The results demonstrate that the catalytic effect of COMT is mainly due to electrostatic preorganization effects. It is also shown that the compression, NAC and entropic proposals do not account for the catalytic effect.
As a growing number of clinical isolates of are resistant to most antibiotics, new treatment options that are effective against these drug-resistant strains are desperately needed. The majority of the linkages in the cell wall peptidoglycan of are synthesized by nonclassical transpeptidases, namely, the l,d-transpeptidases. Emerging evidence suggests that these enzymes represent a new molecular vulnerability in this pathogen. Recent studies have demonstrated that inhibition of these enzymes by the carbapenem class of β-lactams determines their activity against Here, we studied the interactions of β-lactams with two l,d-transpeptidases in, namely, Ldt and Ldt, and found that both the carbapenem and cephalosporin, but not penicillin, subclasses of β-lactams inhibit these enzymes. Contrary to the commonly held belief that combination therapy with β-lactams is redundant, doripenem and cefdinir exhibit synergy against both pansusceptible and clinical isolates that are resistant to most antibiotics, which suggests that dual-β-lactam therapy has potential for the treatment of Finally, we solved the first crystal structure of an l,d-transpeptidase, Ldt, and using substitutions of critical amino acids in the catalytic site and computational simulations, we describe the key molecular interactions between this enzyme and β-lactams, which provide an insight into the molecular basis for the relative efficacy of different β-lactams against .
Reversible and irreversible covalent ligands are advanced cysteine protease inhibitors in the drug development pipeline. K777 is an irreversible inhibitor of cruzain, a necessary enzyme for the survival of the Trypanosoma cruzi (T. cruzi) parasite, the causative agent of Chagas disease. Despite their importance, irreversible covalent inhibitors are still often avoided due to the risk of adverse effects. Herein, we replaced the K777 vinyl sulfone group with a nitrile moiety to obtain a reversible covalent inhibitor (Neq0682) of cysteine protease. Then, we used advanced experimental and computational techniques to explore details of the inhibition mechanism of cruzain by reversible and irreversible inhibitors. The isothermal titration calorimetry (ITC) analysis shows that inhibition of cruzain by an irreversible inhibitor is thermodynamically more favorable than by a reversible one. The hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) simulations were used to explore the mechanism of the reaction inhibition of cruzain by K777 and Neq0682. The calculated free energy profiles show that the Cys25 nucleophilic attack and His162 proton transfer occur in a single step for a reversible inhibitor and two steps for an irreversible covalent inhibitor. The hybrid QM/MM calculated free energies for the inhibition reaction correspond to −26.7 and −5.9 kcal mol–1 for K777 and Neq0682 at the MP2/MM level, respectively. These results indicate that the ΔG of the reaction is very negative for the process involving K777, consequently, the covalent adduct cannot revert to a noncovalent protein–ligand complex, and its binding tends to be irreversible. Overall, the present study provides insights into a covalent inhibition mechanism of cysteine proteases.
Tyrosinase is a key enzyme in melanin synthesis and widely distributed in plants and animals tissues. In mammals, this enzyme is related to pigment production, involved in wound healing, primary immune response and it can also contribute to catecholamines synthesis in the brain. Consequently, tyrosinase enzyme represents an attractive and selective target in the field of the medicine, cosmetics and bio-insecticides. In this paper, experimental kinetics and computational analysis were used to study the inhibition of tyrosinase by analogs of Kojic acid. The main interactions occurring between inhibitors-tyrosinase complexes and the influence of divalent cation (Cu 2+ ) in enzymatic inhibition were investigated by using molecular docking, molecular dynamic simulations and electrostatic OPEN ACCESSMolecules 2014, 19 9592 binding free energy by using the Linear Interaction Energy (LIE) method. The results showed that the electrostatic binding free energy are correlated with values of constant inhibition (r 2 = 0.97).Thus, the model obtained here could contribute to future studies of this important system and, therefore, eventually facilitate development of tyrosinase inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.