Chondroitin sulphate proteoglycans in the extracellular matrix restrict plasticity in the adult central nervous system and their digestion with chondroitinase reactivates plasticity. However the structures in the extracellular matrix that restrict plasticity are unknown. There are many changes in the extracellular matrix as critical periods for plasticity close, including changes in chondroitin sulphate proteoglycan core protein levels, changes in glycosaminoglycan sulphation and the appearance of dense chondroitin sulphate proteoglycan-containing perineuronal nets around many neurons. We show that formation of perineuronal nets is triggered by neuronal production of cartilage link protein Crtl1 (Hapln1), which is up-regulated in the visual cortex as perineuronal nets form during development and after dark rearing. Mice lacking Crtl1 have attenuated perineuronal nets, but the overall levels of chondroitin sulphate proteoglycans and their pattern of glycan sulphation are unchanged. Crtl1 knockout animals retain juvenile levels of ocular dominance plasticity and their visual acuity remains sensitive to visual deprivation. In the sensory pathway, axons in knockout animals but not controls sprout into the party denervated cuneate nucleus. The organization of chondroitin sulphate proteoglycan into perineuronal nets is therefore the key event in the control of central nervous system plasticity by the extracellular matrix.
Perineuronal nets (PNNs) are unique extracellular matrix structures that wrap around certain neurons in the CNS during development and control plasticity in the adult CNS. They appear to contribute to a wide range of diseases/disorders of the brain, are involved in recovery from spinal cord injury, and are altered during aging, learning and memory, and after exposure to drugs of abuse. Here the focus is on how a major component of PNNs, chondroitin sulfate proteoglycans, control plasticity, and on the role of PNNs in memory in normal aging, in a tauopathy model of Alzheimer's disease, and in drug addiction. Also discussed is how altered extracellular matrix/PNN formation during development may produce synaptic pathology associated with schizophrenia, bipolar disorder, major depression, and autism spectrum disorders. Understanding the molecular underpinnings of how PNNs are altered in normal physiology and disease will offer insights into new treatment approaches for these diseases.
Devices implanted into the body become encapsulated due to a foreign body reaction. In the central nervous system (CNS), this can lead to loss of functionality in electrodes used to treat disorders. Around CNS implants, glial cells are activated, undergo gliosis and ultimately encapsulate the electrodes. The primary cause of this reaction is unknown. Here we show that the mechanical mismatch between nervous tissue and electrodes activates glial cells. Both primary rat microglial cells and astrocytes responded to increasing the contact stiffness from physiological values (G' ∼ 100 Pa) to shear moduli G' ≥ 10 kPa by changes in morphology and upregulation of inflammatory genes and proteins. Upon implantation of composite foreign bodies into rat brains, foreign body reactions were significantly enhanced around their stiff portions in vivo. Our results indicate that CNS glial cells respond to mechanical cues, and suggest that adapting the surface stiffness of neural implants to that of nervous tissue could minimize adverse reactions and improve biocompatibility.
A perineuronal net (PNN) is a layer of lattice-like matrix which enwraps the surface of the soma and dendrites, and in some cases the axon initial segments, in sub-populations of neurons in the central nervous system (CNS). First reported by Camillo Golgi more than a century ago, the molecular structure and the potential role of this matrix have only been unraveled in the last few decades. PNNs are mainly composed of hyaluronan, chondroitin sulfate proteoglycans, link proteins, and tenascin R. The interactions between these molecules allow the formation of a stable pericellular complex surrounding synapses on the neuronal surface. PNNs appear late in development co-incident with the closure of critical periods for plasticity. They play a direct role in the control of CNS plasticity, and their removal is one way in which plasticity can be re-activated in the adult CNS. In this review, we examine the molecular components and formation of PNNs, their role in maturation and synaptic plasticity after CNS injury, and the possible mechanisms of PNN action.
Perineuronal nets (PNNs) are dense extracellular matrix (ECM) structures that form around many neuronal cell bodies and dendrites late in development. They contain several chondroitin sulphate proteoglycans (CSPGs), hyaluronan, link proteins and tenascin-R. Their time of appearance correlates with the ending of the critical period for plasticity, and they have been implicated in this process. The distribution of PNNs in the spinal cord was examined using Wisteria floribunda agglutinin lectin and staining for chondroitin sulphate stubs after chondroitinase digestion. Double labelling with the neuronal marker, NeuN, showed that PNNs were present surrounding approximately 30% of motoneurons in the ventral horn, 50% of large interneurons in the intermediate grey and 20% of neurons in the dorsal horn. These PNNs formed in the second week of postnatal development. Immunohistochemical staining demonstrated that the PNNs contain a mixture of CSPGs, hyaluronan, link proteins and tenascin-R. Of the CSPGs, aggrecan was present in all PNNs while neurocan, versican and phosphacan/RPTPbeta were present in some but not all PNNs. In situ hybridization showed that aggrecan and cartilage link protein (CRTL 1) and brain link protein-2 (BRAL 2) are produced by neurons. PNN-bearing neurons express hyaluronan synthase, and this enzyme and phosphacan/RPTPbeta may attach PNNs to the cell surface. During postnatal development the expression of link protein and aggrecan mRNA is up-regulated at the time of PNN formation, and these molecules may therefore trigger their formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.