Training is a key component of building capacity for public health surveillance and response, but has often been difficult to quantify. During fiscal 2009, the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) supported 18 partner organizations in conducting 123 training initiatives in 40 countries for 3,130 U.S. military, civilian and host-country personnel. The training assisted with supporting compliance with International Health Regulations, IHR (2005). Training activities in pandemic preparedness, outbreak investigation and response, emerging infectious disease (EID) surveillance and pathogen diagnostic techniques were expanded significantly. By engaging local health and other government officials and civilian institutions, the U.S. military’s role as a key stakeholder in global public health has been strengthened and has contributed to EID-related surveillance, research and capacity-building initiatives specified elsewhere in this issue. Public health and emerging infections surveillance training accomplished by AFHSC-GEIS and its Department of Defense (DoD) partners during fiscal 2009 will be tabulated and described.
The Armed Forces Health Surveillance Center’s Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) supports and oversees surveillance for emerging infectious diseases, including respiratory diseases, of importance to the U.S. Department of Defense (DoD). AFHSC-GEIS accomplishes this mission by providing funding and oversight to a global network of partners for respiratory disease surveillance. This report details the system’s surveillance activities during 2009, with a focus on efforts in responding to the novel H1N1 Influenza A (A/H1N1) pandemic and contributions to global public health. Active surveillance networks established by AFHSC-GEIS partners resulted in the initial detection of novel A/H1N1 influenza in the U.S. and several other countries, and viruses isolated from these activities were used as seed strains for the 2009 pandemic influenza vaccine. Partners also provided diagnostic laboratory training and capacity building to host nations to assist with the novel A/H1N1 pandemic global response, adapted a Food and Drug Administration-approved assay for use on a ruggedized polymerase chain reaction platform for diagnosing novel A/H1N1 in remote settings, and provided estimates of seasonal vaccine effectiveness against novel A/H1N1 illness. Regular reporting of the system’s worldwide surveillance findings to the global public health community enabled leaders to make informed decisions on disease mitigation measures and controls for the 2009 A/H1N1 influenza pandemic. AFHSC-GEIS’s support of a global network contributes to DoD’s force health protection, while supporting global public health.
The Strategic National Stockpile (SNS) program, managed by the Centers for Disease Control and Prevention, Department of Health and Human Services, is designed to deliver critical medical resources to the site of a national emergency. A recent interagency agreement between the Department of Defense and the Department of Health and Human Services indicates that military medical treatment facility commanders should be actively engaged in cooperative planning with local and state public health officials, so that reception, storage, distribution, and dispensing of SNS materials as a consequence of an actual event could occur without disruption or delay. This article describes the SNS program and discusses issues of relevance to medical treatment facility commanders and Department of Defense medical planners and logisticians.
This study utilized modeling and simulation to examine the effectiveness of current and potential future COVID-19 response interventions in the West African countries of Guinea, Liberia, and Sierra Leone. A comparison between simulations can highlight which interventions could have an effect on the pandemic in these countries. An extended compartmental model was used to run simulations incorporating multiple vaccination strategies and non-pharmaceutical interventions (NPIs). In addition to the customary categories of susceptible, exposed, infected, and recovered (SEIR) compartments, this COVID-19 model incorporated early and late disease states, isolation, treatment, and death. Lessons learned from the 2014–2016 Ebola virus disease outbreak—especially the optimization of each country’s resource allocation—were incorporated in the presented models. For each country, models were calibrated to an estimated number of infections based on actual reported cases and deaths. Simulations were run to test the potential future effects of vaccination and NPIs. Multiple levels of vaccination were considered, based on announced vaccine allocation plans and notional scenarios. Increased vaccination combined with NPI mitigation strategies resulted in thousands of fewer COVID-19 infections in each country. This study demonstrates the importance of increased vaccinations. The levels of vaccination in this study would require substantial increases in vaccination supplies obtained through national purchases or international aid. While this study does not aim to develop a model that predicts the future, it can provide useful information for decision-makers in low- and middle-income nations. Such information can be used to prioritize and optimize limited available resources for targeted interventions that will have the greatest impact on COVID-19 pandemic response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.