The pathogen Vibrio vulnificus has been associated with the majority of clinical cases of septicemia and deaths attributed to shellfish consumption. However, reports on biocontrol agents against this pathogen are scarce. In this study, the strain A5 of Bacillus amyloliquefaciens (A5) was evaluated against V. vulnificus. The sensitivity of V. vulnificus to A5 was first assessed in vitro using selected solid media as well as autoclaved oysters (Crassostrea gigas). Then, the ability of A5 to colonize live oysters was evaluated, and the biocontrol efficacy was investigated in vivo using oysters inoculated with V. vulnificus before or after inoculation with A5. The survival of the pathogen in oysters was evaluated after 2, 3, 4, and 6 days of exposure to A5 in all the experiments. In vitro, A5 showed inhibition halos of 18 mm against V. vulnificus. In autoclaved oysters, A5 caused a significant reduction in the levels of V. vulnificus on day 2 at 5.14 log CFU/g, but the pathogen’s counts were restored after day 3. In vivo, A5 was able to survive in live oysters and prevented the colonization of V. vulnificus only when the biocontrol agent was inoculated before the pathogen. Results show the potential of A5 to prevent V. vulnificus uptake by oysters when administered prior to the pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.