Bone consists of a hard mineral phase and a compliant biopolymer phase resulting in a composite material that is both lightweight and strong. Osteoporosis that degrades spongy bone preferentially over time leads to bone brittleness in the elderly. A porous ceramic material that can mimic spongy bone for a one-time implant provides a potential solution for the future needs of an aging population. Scaffolds made by magnetic freeze casting resemble the aligned porosity of spongy bone. A magnetic field applied throughout freezing induces particle chaining and alignment of lamellae structures between growing ice crystals. After freeze drying to extract the ice and sintering to strengthen the scaffold, cubes from the scaffold center are mechanically compressed along longitudinal (z-axis, ice growth direction) and transverse (y-axis, magnetic field direction) axes. The best alignment of lamellar walls in the scaffold center occurs when applying magnetic freeze casting with the largest particles (350nm) at an intermediate magnetic field strength (75mT), which also agrees with stiffness enhancement results in both z and y-axes. Magnetic moments of different sized magnetized alumina particles help determine the ideal magnetic field strength needed to induce alignment in the scaffold center rather than just at the poles.
The shortage of skilled workers who can use robots is a crucial issue hampering the growth of manufacturing industries. We present a new type of workforce training system, TeachBot, in which a robotic instructor delivers a series of interactive lectures using graphics and physical demonstration of its arm movements. Furthermore, the TeachBot allows learners to physically interact with the robot. This new human-computer interface, integrating oral and graphical instructions with motion demonstration and physical touch, enables to create engaging training materials. Effective learning takes place when the learner simultaneously interacts with an embodiment of new knowledge. We apply this “Learning by Touching” methodology to teach basic concepts, e.g. how a shaft encoder and feedback control work. In a pilot randomized control test with a small number of human subjects, we find suggestive evidence that Learning by Touching enhances learning effectiveness in this robotic context for adult learners. Students whose learning experience included touching the robot as opposed to watching it delivers the lessons showed gains in their ability to integrate knowledge about robotics. The “touching” group showed statistically significant gains in self-efficacy, which is an important antecedent to further learning and successful use of new technologies, as well as gains in knowledge about robotic concepts that trend toward significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.