Linear and nonlinear Hamiltonian systems are studied on time scales . We unify symplectic flow properties of discrete and continuous Hamiltonian systems. A chain rule which unifies discrete and continuous settings is presented for our so-called alpha derivatives on generalized time scales. This chain rule allows transformation of linear Hamiltonian systems on time scales under simultaneous change of independent and dependent variables, thus extending the change of dependent variables recently obtained by Došlý and Hilscher. We also give the Legendre transformation for nonlinear Euler-Lagrange equations on time scales to Hamiltonian systems on time scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.