Matrix metalloproteinases (MMPs) are a family of zinc-containing enzymes involved in the degradation and remodeling of extracellular matrix proteins. Under normal physiological conditions, the activities of these enzymes are well-regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs). Chronic stimulation of MMP activities due to an imbalance in the levels of MMPs and TIMPs has been implicated in the pathogenesis of a variety of diseases such as cancer, osteoarthritis, and rheumatoid arthritis. Thus, MMP inhibitors are expected to be useful for the treatment of these disorders. Because of their importance in a variety of pathological conditions, a number of small molecular weight MMP inhibitors have entered clinical trials in humans. However, the results of these trials have been extremely disappointing and have led many investigators to conclude that MMP inhibitors have no therapeutic benefit in human cancer. To date, the first generation MMP inhibitors exhibited poor bioavailability while second-generation compounds revealed that prolonged treatment caused musculoskeletal pain and inflammation or had a lack of efficacy. This article describes the design of small molecular weight MMP inhibitors, a brief description of available three-dimensional MMP structures, a review of the proposed therapeutic utility of MMP inhibitors, and a clinical update of compounds that have entered clinical trials in humans. The experimentally determined structures used in the structure-based design of MMP inhibitors are thoroughly covered. Major emphasis is on recently published and/or patented potent MMP inhibitors, from approximately January 2000 to April 2003, and their pharmacological properties. Protein inhibitors of these proteolytic enzymes, i.e. TIMPs, will not be discussed.
Matrix metalloproteinases (MMPs) are a family of zinc-containing enzymes involved in the degradation and remodeling of extracellular matrix proteins. The activities of these enzymes are well regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs). Chronic stimulation of MMP activities due to an imbalance in the levels of MMPs and TIMPs has been implicated in the pathogenesis of a variety of diseases such as cancer, osteoarthritis, and rheumatoid arthritis. Thus, MMP inhibitors are expected to be useful for the treatment of these disorders. This article reviews briefly the biochemistry of MMPs and evidence for their pathogenic roles using molecular biology approaches. Biomolecular structures used in the design of MMP inhibitors are thoroughly covered. Major emphasis is on recently published potent, small molecular weight MMP inhibitors and their pharmacological properties. Finally, available clinical results of compounds in development are summarized.
A novel dipyridodiazepinone, 6,11-dihydro-11-cyclopropyl-4-methyldipyrido[2,3-b:2',3'-e]- [1,4]diazepin-6-one (BI-RG-587), is a selective noncompetitive inhibitor of HIV-1 reverse transcriptase (RT-1). An azido photoaffinity analogue of BI-RG-587 was synthesized and found to irreversibly inhibit the enzyme upon UV irradiation. BI-RG-587 and close structural analogues competitively protected RT-1 from inactivation by the photoaffinity label. A thiobenzimidazolone (TIBO) derivative, a nonnucleoside inhibitor of RT-1, also protected the enzyme from photoinactivation, which suggests a common binding site for these compounds. Substrates dGTP, template-primer, and tRNA afforded no protection from enzyme inactivation. A tritiated photoaffinity probe was found to stoichiometrically and selectively label p66 such that 1 mol of probe inactivates 1 mol of RT-1.
Novel pyrido[2,3-b][1,4]benzodiazepinones (I), pyrido[2,3-b][1,5]benzodiazepinones (II), and dipyrido[3,2-b:2',3'-e][1,4]diazepinones (III) were found to inhibit human immunodeficiency virus type 1 (HIV-1) reverse transcriptase in vitro at concentrations as low as 35 nM. In all three series, small substituents (e.g., methyl, ethyl, acetyl) are preferred at the lactam nitrogen, whereas slightly larger alkyl moieties (e.g., ethyl, cyclopropyl) are favored at the other (N-11) diazepinone nitrogen. In general, lipophilic substituents are preferred on the A ring, whereas substitution on the C ring generally reduces potency relative to the corresponding compounds with no substituents on the aromatic rings. Maximum potency is achieved with methyl substitution at the position ortho to the lactam nitrogen atom; however, in this case an unsubstituted lactam nitrogen is preferred. Additional substituents on the A ring can be readily tolerated. The dipyridodiazepinone derivative 11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'-e] [1,4]diazepin-6-one (96, nevirapine) is a potent (IC50 = 84 nM) and and selective non-nucleoside inhibitor of HIV-1 reverse transcriptase, and has been chosen for clinical evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.