Southwest Spitsbergen, Wedel Jarlsberg Land, consists of two Proterozoic terranes with differing structural and metamorphic histories. The northern terrane experienced two Early Palaeozoic deformation events both accompanied by greenschist-facies metamorphism of similar grade. The southern terrane records a Neoproterozoic pervasive amphibolite-facies metamorphism and strong deformational fabric only locally retrogressed during a Caledonian greenschist-grade event. These terranes are separated by an important sinistral ductile shear zone defined as the Vimsodden–Kosibapasset zone, which comprises wrench- and contraction-dominated domains characteristic of strain partitioning in transpression zones; in this case apparently controlled by contrasting rheologies of the juxtaposed crustal domains. The northern terrane of Wedel Jarlsberg Land shares affinities with Pearya in northern Ellesmere Island of Arctic Canada whereas the southern one resembles the Timanide belt of NE Europe. A quantitative approach facilitated by a numerical plate model demonstrates that correlation with Pearya is feasible if sinistral displacement of c . 600 km occurred during the Caledonian orogeny. The correlation with the Timanides is valid if the southern terrane represents an outlier of the Timanide belt separated from Baltica by the opening of the Iapetus Ocean.
Southwest Spitsbergen, Wedel Jarlsberg Land, consists of two Proterozoic crustal blocks with differing metamorphic histories. Both blocks experienced Caledonian greenschist-facies metamorphism, but only the southern block records an earlier pervasive M1 amphibolite-facies metamorphism and strong deformational fabric. In situ EMPA total-Pb monazite geochronology from both matrix and porphyroblast inclusion results indicate that the older M1 metamorphism occurred at 643 ± 9 Ma, consistent with published cooling ages of c. 620 Ma (hornblende) and 580 Ma (mica) obtained from these same rocks. This region thus contains a lithostratigraphic profile and metamorphic history which are unique within the Svalbard Archipelago. Documentation of a pervasive late Neoproterozoic Barrovian metamorphism is difficult to reconcile with a quiescent nontectonic regime typically inferred for this region, based on the occurrence of rift-drift sequences on the Baltic and Laurentian passive margins. Instead, our new metamorphic age implies an exotic origin of the pre-Devonian basement exposed in SW Spitsbergen and supports models of terrane assembly postulated for the Svalbard Archipelago.
Two Proterozoic terranes with different metamorphic histories are distinguished from geological mapping in southwestern Wedel Jarlsberg Land: a northern greenschist facies terrane and a southern amphibolite facies terrane which has been overprinted by greenschist facies metamorphism. To better characterize the tectonothermal history of these terranes we have obtained new 40 Ar/ 39 Ar mineral dates from this area. A muscovite separate from the northern terrane yielded a Caledonian plateau age of 432 ± 7 Ma. The southern terrane yielded significantly older 40 Ar/ 39 Ar ages with three muscovite plateau dates of 584 ± 14 Ma, 575 ± 15 Ma, and 459 ± 9 Ma, a 484 ± 5 Ma biotite plateau date, and a 616 ± 17 Ma hornblende plateau date. The oldest thermochronological dates are over 300 Ma younger than the age of amphibolite facies metamorphism and therefore probably do not represent uplift-related cooling. Instead, the Vendian dates correlate well with a regionally widespread magmatic and metamorphic/thermal resetting event recognized within Caledonian complexes of northwestern Spitsbergen and Nordaustlandet. The apparent Ordovician dates are interpreted to represent partial resetting, suggesting that late Caledonian greenschist facies overprinting of the southern terrane was of variable intensity.
Ion microprobe dating in Wedel Jarlsberg Land, southwestern Spitsbergen, provides new evidence of early Neoproterozoic (c. 950 Ma) meta-igneous rocks, the Berzeliuseggene Igneous Suite, and late Neoproterozoic (c. 640 Ma) amphibolite-facies metamorphism. The older ages are similar to those obtained previously in northwestern Spitsbergen and Nordaustlandet where they are related to the Tonian age Nordaustlandet Orogeny. The younger ages complement those obtained recently from elsewhere in Wedel Jarlsberg Land of Torellian deformation and metamorphism at 640 Ma. The Berzeliuseggene Igneous Suite occurs in gently N-dipping, top-to-the-S-directed thrust sheets on the eastern and western sides of Antoniabreen where it is tectonically intercalated with younger Neoproterozoic sedimentary formations, suggesting that it provided a lower Tonian basement on which upper Tonian to Cryogenian sediments (Deilegga Group) were deposited. They were deformed together during the Torellian Orogeny, prior to deposition of Ediacaran successions (Sofiebogen Group) and overlying Cambro-Ordovician shelf carbonates, and subsequent Caledonian and Cenozoic deformation. The regional importance of the late Neoproterozoic Torellian Orogeny in Svalbard's Southwestern Province and its correlation in time with the Timanian Orogeny in the northern Urals as well as tectonostratigraphic similarities between the Timanides and Pearya (northwestern Ellesmere Island) favour connection of these terranes prior to the opening of the Iapetus Ocean and Caledonian Orogeny.
Recent fieldwork in Nordenskiöld Land, Svalbard's Southwestern Basement Province, has established the presence of high‐pressure (HP) lithologies. They are strongly retrogressed blueschists consisting mainly of garnet and Ca‐amphibole with remnants of ferroglaucophane and phengite. The pressure–temperature (P–T) conditions were estimated using phase equilibrium modelling in the NCKFMMnASHTO system. P–T estimates based on the garnet, phengite and ferroglaucophane compositional isopleths and modelled paragenetic assemblage indicate peak metamorphism at 470–490 °C and 14–18 kbar. These data fall close to the 7–8 °C km−1 geotherm, which is similar to that from Motalafjella, the only previously known occurrence of blueschists in Svalbard's Caledonides. The newly discovered blueschists could have formed during the early stage of the Caledonian Orogeny and may represent a vestige of missing marginal basins of the western Iapetus developed at the onset of subduction. The likely counterpart to Svalbard's blueschists is the ophiolitic sequence in the Pearya Terrane of northern Ellesmere Island.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.