The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic resonance imaging (MRI) contrast agents sensitive to the neurotransmitter dopamine. The sensors were derived from the heme domain of the bacterial cytochrome P450-BM3 (BM3h). Ligand binding to a site near BM3h’s paramagnetic heme iron led to a drop in MRI signal enhancement and a shift in optical absorbance. Using an absorbance-based screen, we evolved the specificity of BM3h away from its natural ligand and toward dopamine, producing sensors with dissociation constants for dopamine of 3.3–8.9 μM. These molecules were used to image depolarization-triggered neurotransmitter release from PC12 cells and in the brains of live animals. Our results demonstrate the feasibility of molecular-level functional MRI using neural activity–dependent sensors, and our protein engineering approach can be generalized to create probes for other targets.
Visualizing and modulating molecular and cellular processes occurring deep within living organisms is fundamental to our study of basic biology and disease. Currently, the most sophisticated tools available to dynamically monitor and control cellular events rely on light-responsive proteins, which are difficult to use outside of optically transparent model systems, cultured cells, or surgically accessed regions owing to strong scattering of light by biological tissue. In contrast, ultrasound is a widely used medical imaging and therapeutic modality that enables the observation and perturbation of internal anatomy and physiology but has historically had limited ability to monitor and control specific cellular processes. Recent advances are beginning to address this limitation through the development of biomolecular tools that allow ultrasound to connect directly to cellular functions such as gene expression. Driven by the discovery and engineering of new contrast agents, reporter genes, and bioswitches, the nascent field of biomolecular ultrasound carries a wave of exciting opportunities.
Noninvasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles, a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of gas vesicles, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.
Neurological and psychiatric diseases often involve the dysfunction of specific neural circuits in particular regions of the brain. Existing treatments, including drugs and implantable brain stimulators, aim to modulate the activity of these circuits, but are typically not cell type-specific, lack spatial targeting or require invasive procedures. Here, we introduce an approach to modulating neural circuits noninvasively with spatial, cell-type and temporal specificity. This approach, called acoustically targeted chemogenetics, or ATAC, uses transient ultrasonic opening of the blood brain barrier to transduce neurons at specific locations in the brain with virally-encoded engineered G-protein-coupled receptors, which subsequently respond to systemically administered bio-inert compounds to activate or inhibit the activity of these neurons. We demonstrate this concept in mice by using ATAC to noninvasively modify and subsequently activate or inhibit excitatory neurons within the hippocampus, showing that this enables pharmacological control of memory formation. This technology allows a brief, noninvasive procedure to make one or more specific brain regions capable of being selectively modulated using orally bioavailable compounds, thereby overcoming some of the key limitations of conventional brain therapies.
We introduce a family of protein nanoparticles capable of sensing analytes in conjunction with magnetic resonance imaging (MRI). The new sensors are derived from the iron storage protein ferritin (Ft); they are designed and optimized using facile protein engineering methods, and self-assembled in cells harboring specific combinations of DNA coding sequences. As illustration, we show that suitably constructed Ft-based sensors can report activity of the important neural signaling enzyme protein kinase A (PKA). Phosphorylation of the engineered Ft-based nanoparticles by PKA promotes clustering and changes in T2-weighted MRI signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.