In many applications of information systems learning algorithms have to act in dynamic environments where data are collected in the form of transient data streams. Compared to static data mining, processing streams imposes new computational requirements for algorithms to incrementally process incoming examples while using limited memory and time. Furthermore, due to the non-stationary characteristics of streaming data, prediction models are often also required to adapt to concept drifts. Out of several new proposed stream algorithms, ensembles play an important role, in particular for non-stationary environments. This paper surveys research on ensembles for data stream classification as well as regression tasks. Besides presenting a comprehensive spectrum of ensemble approaches for data streams, we also discuss advanced learning concepts such as imbalanced data streams, novelty detection, active and semisupervised learning, complex data representations and structured outputs. The paper concludes with a discussion of open research problems and lines of future research.
Abstract-Data stream mining has been receiving increasing attention due to its presence in a wide range of applications such as sensor networks, banking, and telecommunication. One of the most important challenges in learning from data streams is reacting to concept drift, i.e., unforeseen changes of the stream's underlying data distribution. Several classification algorithms that cope with concept drift have been put forward, however, most of them specialize in one type of change. In this paper, we propose a new data stream classifier, called the Accuracy Updated Ensemble (AUE2), which aims at reacting equally well to different types of drift. AUE2 combines accuracy-based weighting mechanisms known from block-based ensembles with the incremental nature of Hoeffding Trees. The proposed algorithm was experimentally compared with 11 state-of-the-art stream methods, including single classifiers, block-based and online ensembles, and hybrid approaches in different drift scenarios. Out of all the compared algorithms, AUE2 provided best average classification accuracy while proving to be less memory consuming than other ensemble approaches. Experimental results show that AUE2 can be considered suitable for scenarios involving many types of drift as well as static environments.
Many real-world applications reveal difficulties in learning classifiers from imbalanced data. Although several methods for improving classifiers have been introduced, the identification of conditions for the efficient use of the particular method is still an open research problem. It is also worth to study the nature of imbalanced data, characteristics of the minority class distribution and their influence on classification performance. However, current studies on imbalanced data difficulty factors have been mainly done with artificial datasets and their conclusions are not easily applicable to the real-world problems, also because the methods for their identification are not sufficiently developed. In our paper, we capture difficulties of class distribution in real datasets by considering four types of minority class examples: safe, borderline, rare and outliers. First, we confirm their occurrence in real data by exploring multidimensional visualizations of selected datasets. Then, we introduce a method for an identification of these types of examples, which is based on analyzing a class distribution in a local neighbourhood of the considered example. Two ways of modeling this neighbourhood are presented: with k-nearest examples and with kernel functions. Experiments with artificial datasets show that these methods are able to re-discover simulated types of examples. Next contributions of this paper include carrying out a comprehensive experimental study with 26 real world imbalanced datasets, where (1) we identify new data characteristics basing on the analysis of types of minority examples; (2) we demonstrate that considering the results of this analysis allow to differentiate classification performance of popular classifiers and pre-processing methods and to evaluate their areas of competence. Finally, we highlight directions of exploiting the results of our analysis for developing new algorithms for learning classifiers and pre-processing methods.
The rough set theory, based on the original definition of the indiscernibility relation, is not useful for analysing incomplete information tables where some values of attributes are unknown. In this paper we distinguish two different semantics for incomplete information: the "missing value" semantics and the "absent value" semantics. The already known approaches, e.g. based on the tolerance relations, deal with the missing value case. We introduce two generalisations of the rough sets theory to handle these situations. The first generalisation introduces the use of a non symmetric similarity relation in order to formalise the idea of absent value semantics. The second proposal is based on the use of valued tolerance relations. A logical analysis and the computational experiments show that for the valued tolerance approach it is possible to obtain more informative approximations and decision rules than using the approach based on the simple tolerance relation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.