Of 105 rhizobial isolates obtained from nodules of commonly cultivated legumes, we selected 19 strains on the basis of a high rate of symbiotic plant growth promotion. Individual strains within the species Rhizobium leguminosarum bv. trifolii, R. leguminosarum bv. viciae, and Rhizobium etli displayed variation not only in plasmid sizes and numbers but also in the chromosomal 16S-23S internal transcribed spacer. The strains were tagged with gusA gene and their competitiveness was examined in relation to an indigenous population of rhizobia under greenhouse conditions. A group of 9 strains was thus isolated that were competitive in relation to native rhizobia in pot experiments. Nineteen selected competitive and uncompetitive strains were examined with respect to their ability to utilize various carbon and energy sources by means of commercial Biolog GN2 microplate test. The ability of the selected strains to metabolize a wide range of nutrients differed markedly and the competitive strains were able to utilize more carbon and energy sources than uncompetitive ones. A major difference concerned the utilization of amino and organic acids, which were metabolized by most of the competitive and only a few uncompetitive strains, whereas sugars and their derivatives were commonly utilized by both groups of strains. A statistically significant correlation between the ability to metabolize a broad range of substrates and nodulation competitiveness was found, indicating that metabolic properties may be an essential trait in determining the competitiveness of rhizobia.
Flavonoids play a crucial role as signal molecules in promoting the formation of nodules by symbiotic bacteria commonly known as rhizobia. The early interaction between flavonoids and NodD regulatory protein activates nod gene transcription and the synthesis of Nod factor that initiates nodule primordium. In this study, we assessed response to flavonoids as factors influencing competitiveness of rhizobia and their symbiotic activity. Rhizobium leguminosarum nodule isolates belonging to three biovars, trifolii, viciae and phaseoli characterized earlier as competitive or uncompetitive relative to native rhizobia, were used. Investigating nodA promoter induction using plasmid lacZ fusion, we found that competitive strains more readily responded to a wide range of synthetic flavonoids and seed exudates in comparison to uncompetitive strains, albeit some exceptions were noticed. Of all the synthetic flavonoids and seed exudates studied, naringenin, hespertin and clover and vetch exudates were the most effective inducers of nodA promoter in competitive strains. Only one of the nine examined uncompetitive strains was highly induced by clover seed exudate. Subsequently, the effect of preinduction of R. leguminosarum bv. trifolii with clover exudate was assessed. Out of 18 pre-activated strains, nine strains (including competitive ones) increased clover wet mass of shoots and nodule number when used as inoculants. Our results demonstrate a plausible approach of isolating and characterizing flavonoid-responsive field isolates that could be further developed into relevant legume inoculants.
Rhizobium leguminosarum bv. trifolii produces an acidic exopolysaccharide (EPS) that is important for the induction of nitrogen-fixing nodules on clover. Recently, three genes, pssN, pssO, and pssP, possibly involved in EPS biosynthesis and polymerization were identified. The predicted protein product of the pssP gene shows a significant sequence similarity to other proteins belonging to the PCP2a family that are involved in the synthesis of high-molecular-weight EPS. An R. leguminosarum bv. trifolii TA1 mutant with the entire coding region of pssP deleted did not produce the EPS. A pssP mutant with the 5' end of the gene disrupted produced exclusively low-molecular-weight EPS. A mutant that synthesized a functional N-terminal periplasmic domain but lacked the C-terminal part of PssP produced significantly reduced amounts of EPS with a slightly changed low to high molecular form ratio. Mutants affected in the PssP protein carrying a stable plasmid with a constitutively expressed gusA gene induced nodules on red clover that were not fully occupied by bacteria. A mutant with the entire pssP gene deleted infected only a few plant cells in the nodule. The pssP promoter-gusA reporter fusion was active in bacteroids during nodule development.
BackgroundSoil bacteria from the genus Rhizobium are characterized by a complex genomic architecture comprising chromosome and large plasmids. Genes responsible for symbiotic interactions with legumes are usually located on one of the plasmids, named the symbiotic plasmid (pSym). The plasmids have a great impact not only on the metabolic potential of rhizobia but also underlie genome rearrangements and plasticity.ResultsHere, we analyzed the distribution and sequence variability of markers located on chromosomes and extrachromosomal replicons of Rhizobium leguminosarum bv. trifolii strains originating from nodules of clover grown in the same site in cultivated soil. First, on the basis of sequence similarity of repA and repC replication genes to the respective counterparts of chromids reported in R. leguminosarum bv. viciae 3841 and R. etli CFN42, chromid-like replicons were distinguished from the pool of plasmids of the nodule isolates studied. Next, variability of the gene content was analyzed in the different genome compartments, i.e., the chromosome, chromid-like and 'other plasmids'. The stable and unstable chromosomal and plasmid genes were detected on the basis of hybridization data. Displacement of a few unstable genes between the chromosome, chromid-like and 'other plasmids', as well as loss of some markers was observed in the sampled strains. Analyses of chosen gene sequences allowed estimation of the degree of their adaptation to the three genome compartments as well as to the host.ConclusionsOur results showed that differences in distribution and sequence divergence of plasmid and chromosomal genes can be detected even within a small group of clover nodule isolates recovered from clovers grown at the same site. Substantial divergence of genome organization could be detected especially taking into account the content of extrachromosomal DNA. Despite the high variability concerning the number and size of plasmids among the studied strains, conservation of the location as well as dynamic distribution of the individual genes (especially replication genes) of a particular genome compartment were demonstrated. The sequence divergence of particular genes may be affected by their location in the given genome compartment. The 'other plasmid' genes are less adapted to the host genome than the chromosome and chromid-like genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.