Genetic factors and socioeconomic status (SES) inequalities play a large role in educational attainment, and both have been associated with variations in brain structure and cognition. However, genetics and SES are correlated, and no prior study has assessed their neural associations independently. Here we used a polygenic score for educational attainment (EduYears-PGS), as well as SES, in a longitudinal study of 551 adolescents to tease apart genetic and environmental associations with brain development and cognition. Subjects received a structural MRI scan at ages 14 and 19. At both time points, they performed three working memory (WM) tasks. SES and EduYears-PGS were correlated (r= 0.27) and had both common and independent associations with brain structure and cognition. Specifically, lower SES was related to less total cortical surface area and lower WM. EduYears-PGS was also related to total cortical surface area, but in addition had a regional association with surface area in the right parietal lobe, a region related to nonverbal cognitive functions, including mathematics, spatial cognition, and WM. SES, but not EduYears-PGS, was related to a change in total cortical surface area from age 14 to 19. This study demonstrates a regional association of EduYears-PGS and the independent prediction of SES with cognitive function and brain development. It suggests that the SES inequalities, in particular parental education, are related to global aspects of cortical development, and exert a persistent influence on brain development during adolescence.
Chronic pain is a debilitating problem, and insights in the neurobiology of chronic pain are needed for the development of novel pain therapies. A genome-wide association study implicated the 5p15.2 region in chronic widespread pain. This region includes the coding region for FAM173B, a functionally uncharacterized protein. We demonstrate here that FAM173B is a mitochondrial lysine methyltransferase that promotes chronic pain. Knockdown and sensory neuron overexpression strategies showed that FAM173B is involved in persistent inflammatory and neuropathic pain via a pathway dependent on its methyltransferase activity. FAM173B methyltransferase activity in sensory neurons hyperpolarized mitochondria and promoted macrophage/microglia activation through a reactive oxygen species–dependent pathway. In summary, we uncover a role for methyltransferase activity of FAM173B in the neurobiology of pain. These results also highlight FAM173B methyltransferase activity as a potential therapeutic target to treat debilitating chronic pain conditions.
Fluctuations in global neural gain, arising from brainstem arousal systems, have been found to shape attention, learning, and decision-making as well as cortical state. Comparatively, little is known about how fluctuations in neural gain affect cognitive control. In the present study, we examined this question using a combination of behavioral methods, pupillometry, and computational modeling. Simulations of a comprehensive model of the Stroop task incorporating task conflict and both proactive and reactive forms of control indicated that increasing global gain led to an overall speeding of reaction times, increased Stroop interference, and decreased Stroop facilitation. Pupil analyses revealed that the pre-trial pupil derivative (i.e., rate of change), a putative non-invasive index of global gain, showed the same diagnostic relationships with the Stroop-task performance of human participants. An analysis of the internal model dynamics suggested that a gain-related increase in task conflict and corresponding (within-trial) increase in reactive control are vital for understanding this pattern of behavioral results. Indeed, a similar connectionist model without this task-conflict-control loop could not account for the results. Our study suggests that spontaneous fluctuations in neural gain can have a significant impact on reactive cognitive control.
The influence of socioeconomic (SES) inequalities on brain and cognitive development is a hotly debated topic. However, previous studies have not considered that genetic factors overlap with SES. Here we showed, for the first time, that SES and EduYears-PGS (a score from thousands of genetic markers for educational attainment) have independent associations with both cognition and global cortical surface area in adolescents. EduYears-PGS also had a localized association in the brain: the intraparietal sulcus, a region related to non-verbal intelligence. In contrast, SES had global, but not regional, associations, and these persisted throughout adolescence. This suggests that the influence of SES inequalities is widespread -a result that opposes the current paradigm and can help inform policies in education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.