This corpus-based study aimed to investigate the presence of context-dependent linguistic errors in a corpus of clinical reports. The data were taken from a corpus comprising more than 2 million words and made up of clinical reports from emergency medicine, intensive care unit, general surgery, and psychiatry. Quantitative and qualitative analyses were carried out. A language model based on n-grams was developed for the detection of errors, parameters for the selection of cases were defined, and a classification tool was implemented. The findings indicated that emergency medicine was the medical specialty with the highest number of context-dependent errors and that the most frequent type of error was omission of written accent. Furthermore, the analysis revealed the presence of errors of competence due to the incorrect application of the linguistic norm of Spanish, phenomena of phonetic similarity, and composition of words; it is also worth noting that performance errors occurred due to rapid typing on the keyboard. This study constituted the first analysis and creation of a typology of context-dependent errors for the medical domain in Spanish. It contributed to the design of a module based on linguistic knowledge that can be used for the development and improvement of automatic correction systems that, in turn, are used for data processing in medicine.
Linguistic errors in the biomedical domain: Towards an error typology for Spanish. The objective of this work is the analysis of errors contained in a corpus of medical reports in natural language and the design of a typology of errors, as there was no systematic review on verification and correction of errors in clinical documentation in Spanish. In the development of automatic detection and correction systems, it is of great interest to delve into the nature of the linguistic errors that occur in clinical reports, in order to detect and treat them properly. The results show that omission errors are the most frequent ones in the analyzed sample, and that word length certainly influences error frequency. The typification of error patterns provided is enabling the development of a module based on linguistic knowledge, which is currently in progress. This will help to improve the performance of error detection and correction systems for the biomedical domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.