Ceramide has recently been established as a central messenger in the signaling cascades controlling cell behavior. Physicochemical studies have revealed a strong tendency of this lipid toward phase separation in mixtures with phosphatidylcholines. The thermal phase behavior and structure of fully hydrated binary membranes composed of dimyristoylphosphatidylcholine (DMPC) and N-palmitoyl-ceramide (C16:0-ceramide, up to a mole fraction X(cer) = 0.35) were resolved in further detail by high-sensitivity differential scanning calorimetry (DSC) and x-ray diffraction. Both methods reveal very strong hysteresis in the thermal phase behavior of ceramide-containing membranes. A partial phase diagram was constructed based on results from a combination of these two methods. DSC heating scans show that with increased X(cer) the pretransition temperature T(p) first increases, whereafter at X(cer) > 0.06 it can no longer be resolved. The main transition enthalpy DeltaH remains practically unaltered while its width increases significantly, and the upper phase boundary temperature of the mixture shifts to approximately 63 degrees C at X(cer) = 0.30. Upon cooling, profound phase separation is evident, and for all of the studied compositions there is an endotherm in the region close to the T(m) for DMPC. At X(cer) >/= 0.03 a second endotherm is evident at higher temperatures, starting at 32.1 degrees C and reaching 54.6 degrees C at X(cer) = 0.30. X-ray small-angle reflection heating scans reveal a lamellar phase within the temperature range of 15-60 degrees C, regardless of composition. The pretransition is observed up to X(cer) < 0.18, together with an increase in T(p). In the gel phase the lamellar repeat distance d increases from approximately 61 A at X(cer) = 0. 03, to 67 A at X(cer) = 0.35. In the fluid phase increasing X(cer) from 0.06 to 0.35 augments d from 61 A to 64 A. An L(beta')/L(alpha) (ripple/fluid) phase coexistence region is observed at high temperatures (from 31 to 56.5 degrees C) when X(cer) > 0.03. With cooling from temperatures above 50 degrees C we observe a slow increase in d as the coexistence region is entered. A sudden solidification into a metastable, modulated gel phase with high d values is observed for all compositions at approximately 24 degrees C. The anomalous swelling for up to X(cer) = 0.30 in the transition region is interpreted as an indication of bilayer softening and thermally reduced bending rigidity.
Small-angle neutron scattering data obtained from fully hydrated, multilamellar phospholipid bilayers with deuterated acyl chains of different length are presented and analyzed within a paracrystalline theory and a geometric model that permit the bilayer structure to be determined under conditions where the lamellar layers are coupled and fluctuating. This theory provides structural information in the region of the solid-fluid bilayer phase transition without invoking the usual decoupling of the scattering intensity function into form and structure factors. Results are presented as a function of temperature for the lamellar repeat distance, the hydrophobic bilayer thickness, as well as the thickness of the aqueous and polar head group region. In addition to these geometric parameters the analysis permits determination of molecular cross-sectional area, number of interlamellar water molecules, as well as estimates for response functions such as lateral area compressibility. The results, which are compared to experimental data obtained by other techniques, provide indirect information on interlamellar undulation forces, renormalization of bilayer bending rigidity, and unbinding phenomena in multilamellar stacks. ͓S1063-651X͑96͒05605-X͔ PACS number͑s͒: 87.64.Bx, 64.60.Fr
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.