Using the fractionator principle, the total number, density and diameter size of myelinated callosal fibers were estimated in the corpus callosum (CC) of 10 Danish males between 39 and 60 years of age. All sampled brains had been used in previous quantitative studies, for example, studies of neocortical neuron number, and were selected to determine whether the variability in the neocortical neuron number correlated with the total number of myelinated callosal fibers. Middle-aged males had an average of 138 · 10 6 (coefficient of variance; CV = 0.19) myelinated fibers, but did not show any correlation with the neocortical neuron number (r = 0.25; P = 0.49). The mean area of the CC was estimated to be 7.2 cm 2 (CV = 0.17), and showed a significant correlation with the number of callosal fibers (r = 0.69, P = 0.041). Additionally, an overall density decline from the anterior to the posterior region of the CC was observed, with an inverse relationship between the distribution of large and small fibers along the callosal axis. This study suggests that many mechanisms are involved in the development and determination of axonal projections across the CC that cannot simply be explained by the neocortical neuron number. Further, a positive correlation between callosal fibers and the CC area verifies that callosal fibers are the factor responsible for CC size. Finally, the number of callosal fibers and their diameters are distributed along the CC in a specific pattern that reflects interactions with different brain regions.
Cognitive decline is a cardinal feature of Alzheimer's disease (AD) predominantly linked to synaptic failure, disrupted network connectivity and neurodegeneration. A large body of evidence associates the Wnt pathway with synaptic modulation and cognitive processes, suggesting a potential role for aberrant Wnt signaling in cognitive impairment. In fact, altered expression of key Wnt pathway components has been found in brains of AD patients as well as AD animal models supporting a deregulated pathway in AD. The evidence for deregulated Wnt signaling in AD, however, remains sparse and focused on isolated Wnt pathway components. Here, we provide the first comprehensive pathway-focused evaluation of the Wnt pathway in the entorhinal cortex and hippocampus of AD brains. Our data demonstrate altered Wnt pathway gene expression at all levels of the pathway in both medial temporal lobe regions with the hippocampus exhibiting most pronounced changes. Furthermore, the Wnt pathway constituents Wnt7b and Tcf7l1/Tcf3 showed overlapping gene expression alterations across both medial temporal lobe structures, while β-catenin was inversely expressed between brain regions. We also identified total protein alterations of the intracellular Wnt pathway signaling components β-catenin, Gsk3β and Tcf7l1/Tcf3 and the phosphorylation state of β-catenin and Gsk3β in the hippocampus suggestive of a link between AD and aberrant canonical activity. Alterations in Gsk3β co-appeared with hippocampal kinase-targeted hyperphosphorylation at specific tau epitope in soluble pretangles and prominent tau aggregation exclusively in insoluble neurofibrillary tangles of AD subjects. The Wnt pathway-focused approach confirms altered Wnt signaling in the neurodegenerative AD brain and highlights the potential role of the pathway as a therapeutic target for the treatment of patients.
Decreased parvalbumin expression is a hallmark of the pathophysiology of schizophrenia and has been associated with abnormal cognitive processing and decreased network specificity. It is not known whether this decrease is due to reduced expression of the parvalbumin protein or degeneration of parvalbumin-positive interneurons (PV + interneurons). In this study, we examined PV + expression in two rat models of cognitive dysfunction in schizophrenia: the environmental social isolation (SI) and pharmacological neonatal phencyclidine (neoPCP) models. Using a stereological method, the optical fractionator, we counted neurons, PV + interneurons, and glial cells in the medial prefrontal cortex (mPFC) and hippocampus (HPC). In addition, we quantified the mRNA level of parvalbumin in the mPFC. There was a statistically significant reduction in the number of PV + interneurons (p = 0.021) and glial cells (p = 0.024) in the mPFC of neonatal phencyclidine rats, but not in SI rats. We observed no alterations in the total number of neurons, hippocampal PV + interneurons, parvalbumin mRNA expression or volume of the mPFC or HPC in the two models. Thus, as the total number of neurons remains unchanged following phencyclidine (PCP) treatment, we suggest that the decreased number of counted PV + interneurons represents a reduced parvalbumin protein expression below immunohistochemical detection limit rather than a true cell loss. Furthermore, these results indicate that the effect of neonatal PCP treatment is not limited to neuronal populations.
Purpose: To illuminate user experiences of schizophrenia, reasons for receiving antipsychotic medication, and encounters with mental health services.Design and Methods: 24 semistructured qualitative research interviews with schizophrenia patients treated with 3-monthly paliperidone palmitate across Scandinavia were synthesized in qualitative content analysis.Findings: Participants describe considerable challenges in everyday functioning.Simultaneously, they rate their current mental and physical well-being high and seem satisfied with their lives. These pathways indicate personal recovery.Practice Implications: The participants emphasize the importance of trustful relations with healthcare professionals, therapeutic conversations, antipsychotic medication in a 3-monthly formulation, and support from relatives. K E Y W O R D S illness insight, personal recovery, PP3M, schizophrenia, service user perspectives 1 | PURPOSE Knowledge of service user perspectives on the antipsychotic treatment of schizophrenia is limited. 1 A number of studies have compared oral treatment with long-acting injections (LAIs). 2-6 This
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.