An increasing demand for bibliometric assessment of individuals has led to a growth of new bibliometric indicators as well as new variants or combinations of established ones. The aim of this review is to contribute with objective facts about the usefulness of bibliometric indicators of the effects of publication activity at the individual level. This paper reviews 108 indicators that can potentially be used to measure performance on individual author-level, and examines the complexity of their calculations in relation to what they are supposed to reflect and ease of end-user application. As such we provide a schematic overview of author-level indicators, where the indicators are broadly categorised into indicators of publication count, indicators that qualify output (on the level of the researcher and journal), indicators of the effect of output (effect as citations, citations normalized to field or the researcher's body of work), indicators that rank the individual's work and indicators of impact over time. Supported by an extensive appendix we present how the indicators are computed, the complexity of the mathematical calculation and demands to data-collection, their advantages and limitations as well as references to surrounding discussion in the bibliometric community. The Appendix supporting this study is available online as supplementary material.
Null hypothesis statistical significance tests (NHST) are widely used in quantitative research in the empirical sciences including scientometrics. Nevertheless, since their introduction nearly a century ago significance tests have been controversial. Many researchers are not aware of the numerous criticisms raised against NHST. As practiced, NHST has been characterized as a 'null ritual' that is overused and too often misapplied and misinterpreted. NHST is in fact a patchwork of two fundamentally different classical statistical testing models, often blended with some wishful quasi-Bayesian interpretations. This is undoubtedly a major reason why NHST is very often misunderstood. But NHST also has intrinsic logical problems and the epistemic range of the information provided by such tests is much more limited than most researchers recognize. In this article we introduce to the scientometric community the theoretical origins of NHST, which is mostly absent from standard statistical textbooks, and we discuss some of the most prevalent problems relating to the practice of NHST and trace these problems back to the mix-up of the two different theoretical origins. Finally, we illustrate some of the misunderstandings with examples from the scientometric literature and bring forward some modest recommendations for a more sound practice in quantitative data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.