Linear signal processing algorithms are effective in dealing with linear transmission channel and linear signal detection, while the nonlinear signal processing algorithms, from the machine learning community, are effective in dealing with nonlinear transmission channel and nonlinear signal detection. In this paper, a brief overview of the various machine learning methods and their application in optical communication is presented and discussed. Moreover, supervised machine learning methods, such as neural networks and support vector machine, are experimentally demonstrated for in-band optical signal to noise ratio (OSNR) estimation and modulation format classification, respectively. The proposed methods accurately evaluate optical signals employing up to 64 quadrature amplitude modulation (QAM), at 32 Gbaud, using only directly-detected data.
In this paper, machine learning techniques relevant to optical communication are presented and discussed. The focus is on applying machine learning tools to optical performance monitoring and performance prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.