BackgroundLow-value clinical practices are common in healthcare, yet the optimal approach to de-adopting these practices is unknown. The objective of this study was to systematically review the literature on de-adoption, document current terminology and frameworks, map the literature to a proposed framework, identify gaps in our understanding of de-adoption, and identify opportunities for additional research.MethodsMEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, the Cochrane Database of Abstracts and Reviews of Effects, and CINAHL Plus were searched from 1 January 1990 to 5 March 2014. Additional citations were identified from bibliographies of included citations, relevant websites, the PubMed ‘related articles’ function, and contacting experts in implementation science. English-language citations that referred to de-adoption of clinical practices in adults with medical, surgical, or psychiatric illnesses were included. Citation selection and data extraction were performed independently and in duplicate.ResultsFrom 26,608 citations, 109 were included in the final review. Most citations (65 %) were original research with the majority (59 %) published since 2010. There were 43 unique terms referring to the process of de-adoption—the most frequently cited was “disinvest” (39 % of citations). The focus of most citations was evaluating the outcomes of de-adoption (50 %), followed by identifying low-value practices (47 %), and/or facilitating de-adoption (40 %). The prevalence of low-value practices ranged from 16 % to 46 %, with two studies each identifying more than 100 low-value practices. Most articles cited randomized clinical trials (41 %) that demonstrate harm (73 %) and/or lack of efficacy (63 %) as the reason to de-adopt an existing clinical practice. Eleven citations described 13 frameworks to guide the de-adoption process, from which we developed a model for facilitating de-adoption. Active change interventions were associated with the greatest likelihood of de-adoption.ConclusionsThis review identified a large body of literature that describes current approaches and challenges to de-adoption of low-value clinical practices. Additional research is needed to determine an ideal strategy for identifying low-value practices, and facilitating and sustaining de-adoption. In the meantime, this study proposes a model that providers and decision-makers can use to guide efforts to de-adopt ineffective and harmful practices.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-015-0488-z) contains supplementary material, which is available to authorized users.
IMPORTANCE Ischemic stroke with large-vessel occlusion can be treated with alteplase and/or endovascular therapy; however, the administration of each treatment is time sensitive. OBJECTIVE To identify the optimal triage and transport strategy: direct to the endovascular center (mothership) or immediate alteplase treatment followed by transfer to the endovascular center (drip and ship), for all patients with suspected large-vessel occlusion stroke.DESIGN SETTING, AND PARTICIPANTS This was a theoretical, conditional probability modeling study. Existing data from clinical trials of stroke treatment were used for model generation.The study was conducted from February 1, 2017, to March 1, 2018. MAIN OUTCOMES AND MEASURESThe time-dependent efficacy of alteplase and endovascular therapy and the accuracy of large-vessel occlusion screening tools were modeled to estimate the probability of positive outcome (modified Rankin Scale score, 0-1 at 90 days) for both the drip-and-ship and mothership transport strategies. Based from onset to treatment, the strategy that estimates the greatest probability of excellent outcome is determined in several different scenarios.RESULTS The patient's travel time from both thrombolysis and endovascular therapy centers, speed of treatment, and positive predictive value of the screening tool affect whether the drip-and-ship or mothership strategy estimates best outcomes. With optimal treatment times (door-to-needle time: 30 minutes; door-in-door-out time: 50 minutes; door-to-groin-puncture time: 60 minutes [mothership], 30 minutes [drip and ship]), both options estimate similar outcomes when the centers are 60 minutes or less apart. However, with increasing travel time between the 2 centers (90 or 120 minutes), drip and ship is favored if the patient would have to travel past the thrombolysis center to reach the endovascular therapy center or if the patient would arrive outside the alteplase treatment time window in the mothership scenario. Holding other variables constant, if treatment times are slow at the thrombolysis center (door-to-needle time: 60 minutes; door-in-door-out time: 120 minutes), the area where mothership estimates the best outcomes expands, especially when the 2 centers are close together (60 minutes apart or less). The area where mothership estimates the best outcome also expands as the positive predictive value of the screening tool increases. CONCLUSIONS AND RELEVANCEThis study suggests that decision making for prehospital transport can be modeled using existing clinical trial data and that these models can be dynamically adapted to changing realities. Based on current median treatment times to realize the full benefit of endovascular therapy on a population level, the study findings suggest that delivery of the treatment should be regionally centralized. The study modeling suggests that transport decision making is context specific and the radius of superiority of the transport strategy changes based on treatment times at both centers, transport times, and the triaging ...
IntroductionAlthough intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are associated with substantial morbidity and mortality among critically ill adults, it remains unknown if prevention or treatment of these conditions improves patient outcomes. We sought to identify evidence-based risk factors for IAH and ACS in order to guide identification of the source population for future IAH/ACS treatment trials and to stratify patients into risk groups based on prognosis.MethodsWe searched electronic bibliographic databases (MEDLINE, EMBASE, PubMed, and the Cochrane Database from 1950 until January 21, 2013) and reference lists of included articles for observational studies reporting risk factors for IAH or ACS among adult ICU patients. Identified risk factors were summarized using formal narrative synthesis techniques alongside a random effects meta-analysis.ResultsAmong 1,224 citations identified, 14 studies enrolling 2,500 patients were included. The 38 identified risk factors for IAH and 24 for ACS could be clustered into three themes and eight subthemes. Large volume crystalloid resuscitation, the respiratory status of the patient, and shock/hypotension were common risk factors for IAH and ACS that transcended across presenting patient populations. Risk factors with pooled evidence supporting an increased risk for IAH among mixed ICU patients included obesity (four studies; odds ratio (OR) 5.10; 95% confidence interval (CI), 1.92 to 13.58), sepsis (two studies; OR 2.38; 95% CI, 1.34 to 4.23), abdominal surgery (four studies; OR 1.93; 95% CI, 1.30 to 2.85), ileus (two studies; OR 2.05; 95% CI, 1.40 to 2.98), and large volume fluid resuscitation (two studies; OR 2.17; 95% CI, 1.30 to 3.63). Among trauma and surgical patients, large volume crystalloid resuscitation and markers of shock/hypotension and metabolic derangement/organ failure were risk factors for IAH and ACS while increased disease severity scores and elevated creatinine were risk factors for ACS in severe acute pancreatitis patients.ConclusionsAlthough several IAH/ACS risk factors transcend across presenting patient diagnoses, some appear specific to the population under study. As our findings were somewhat limited by included study methodology, the risk factors reported in this study should be considered candidate risk factors until confirmed by a large prospective multi-centre observational study.
Supplemental Digital Content is Available in the Text.This randomized trial observed a survival difference between patients randomized to the ABThera versus Barker's vacuum pack after abbreviated laparotomy. As this difference did not seem to be mediated by improved peritoneal fluid drainage, fascial closure rates, or markers of systemic inflammation, it should be confirmed by a multicenter trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.