The population diversity and structure of CRISPR-Cas immunity provides key insights into virus–host interactions. Here, we examined two geographically and genetically distinct natural populations of the thermophilic crenarchaeon Sulfolobus islandicus and their interactions with Sulfolobus spindle-shaped viruses (SSVs) and S. islandicus rod-shaped viruses (SIRVs). We found that both virus families can be targeted with high population distributed immunity, whereby most immune strains target a virus using unique unshared CRISPR spacers. In Kamchatka, Russia, we observed high immunity to chronic SSVs that increases over time. In this context, we found that some SSVs had shortened genomes lacking genes that are highly targeted by the S. islandicus population, indicating a potential mechanism of immune evasion. By contrast, in Yellowstone National Park, we found high inter- and intra-strain immune diversity targeting lytic SIRVs and low immunity to chronic SSVs. In this population, we observed evidence of SIRVs evolving immunity through mutations concentrated in the first five bases of protospacers. These results indicate that diversity and structure of antiviral CRISPR-Cas immunity for a single microbial species can differ by both the population and virus type, and suggest that different virus families use different mechanisms to evade CRISPR-Cas immunity. This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
In the past decade, molecular surveys of viral diversity have revealed that viruses are the most diverse and abundant biological entities on Earth. In culture, however, most viral isolates that infect microbes are represented by a few variants isolated on type strains, limiting our ability to study how natural variation affects virus-host interactions in the laboratory. We screened a set of 137 hot spring samples for viruses that infect a geographically diverse panel of the hyperthemophilic crenarchaeon Sulfolobus islandicus. We isolated and characterized eight SIRVs (Sulfolobus islandicus rod-shaped viruses) from two different regions within Yellowstone National Park (USA). Comparative genomics revealed that all SIRV sequenced isolates share 30 core genes that represent 50–60% of the genome. The core genome phylogeny, as well as the distribution of variable genes (shared by some but not all SIRVs) and the signatures of host-virus interactions recorded on the CRISPR (clustered regularly interspaced short palindromic repeats) repeat-spacer arrays of S. islandicus hosts, identify different SIRV lineages, each associated with a different geographic location. Moreover, our studies reveal that SIRV core genes do not appear to be under diversifying selection and thus we predict that the abundant and diverse variable genes govern the coevolutionary arms race between SIRVs and their hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.