In an expansion of a previous study [1], we apply inverse design methods to produce twodimensional plasma metamaterial devices with realistic plasma elements which incorporate quartz envelopes, collisionality (loss), non-uniform density profiles, and resistance to experimental error/perturbation. Backpropagated finite difference frequency domain simulations are used to design waveguides and demultiplexers operating under the transverse magnetic polarization. Optimal devices with realistic elements are compared to previous devices with idealized elements, and several parameter initialization schemes for the optimization algorithm are explored. Demultiplexing and waveguiding are demonstrated for microwave-regime devices composed of plasma elements with reasonable space-averaged plasma frequencies ∼ 10 GHz and a collision frequency ∼ 1 GHz, allowing for future in-situ training and experimental realization of these designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.