BioXTAS RAW is a graphical-user-interface-based free open-source Python program for reduction and analysis of small-angle X-ray solution scattering (SAXS) data. The software is designed for biological SAXS data and enables creation and plotting of one-dimensional scattering profiles from twodimensional detector images, standard data operations such as averaging and subtraction and analysis of radius of gyration and molecular weight, and advanced analysis such as calculation of inverse Fourier transforms and envelopes. It also allows easy processing of inline size-exclusion chromatography coupled SAXS data and data deconvolution using the evolving factor analysis method. It provides an alternative to closed-source programs such as Primus and ScÅ tter for primary data analysis. Because it can calibrate, mask and integrate images it also provides an alternative to synchrotron beamline pipelines that scientists can install on their own computers and use both at home and at the beamline.
Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.DOI: http://dx.doi.org/10.7554/eLife.07574.001
Diffuse reflectance infrared (IR) spectroscopy performed over a wide temperature range (35-298 K) is used to study the dynamics of H(2) adsorbed within the isostructural metal-organic frameworks M(2)L (M = Mg, Mn, Co, Ni and Zn; L = 2,5-dioxidobenzene-1,4-dicarboxylate) referred to as MOF-74 and CPO-27. Spectra collected at H(2) concentrations ranging from 0.1 to 3.0 H(2) per metal cation reveal that strongly red-shifted vibrational modes arise from isolated H(2) bound to the available metal coordination site. The red shift of the bands associated with this site correlate with reported isosteric enthalpies of adsorption (at small surface coverage), which in turn depend on the identity of M. In contrast, the bands assigned to H(2) adsorbed at positions >3 Å from the metal site exhibit only minor differences among the five materials. Our results are consistent with previous models based on neutron diffraction data and independent IR studies, but they do not support a recently proposed adsorption mechanism that invokes strong H(2)···H(2) interactions (Nijem et al. J. Am. Chem. Soc.2010, 132, 14834-14848). Room temperature IR spectra comparable to those on which the recently proposed adsorption mechanism was based were only reproduced after contaminating the adsorbent with ambient air. Our interpretation that the uncontaminated spectral features result from stepwise adsorption at discrete framework sites is reinforced by systematic red shifts of adsorbed H(2) isotopologues and consistencies among overtone bands that are well-described by the Buckingham model of molecular interactions in vibrational spectroscopy.
Small angle x-ray scattering (SAXS) is a versatile and widely used technique for obtaining low-resolution structures of macromolecules and complexes. SAXS experiments measure molecules in solution, without the need for labeling or crystallization. However, radiation damage currently limits the application of SAXS to molecules that can be produced in microgram quantities; for typical proteins, 10-20 μL of solution at 1 mg/mL is required to accumulate adequate signal before irreversible x-ray damage is observed. Here, we show that cryocooled proteins and nucleic acids can withstand doses at least two orders of magnitude larger than room temperature samples. We demonstrate accurate T = 100 K particle envelope reconstructions from sample volumes as small as 15 nL, a factor of 1000 smaller than in current practice. Cryo-SAXS will thus enable structure determination of difficult-to-express proteins and biologically important, highly radiation-sensitive proteins including light-activated switches and metalloenzymes.
Compartmentalization by liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the organization of biomolecules in space and time. Here, we combine rapid-mixing time-resolved small-angle X-ray scattering (SAXS) approaches to characterize the assembly kinetics of a prototypical prion-like domain with equilibrium techniques that characterize its phase boundaries and the size distribution of clusters prior to phase separation. We find two kinetic regimes on the micro- to millisecond timescale that are distinguished by the size distribution of clusters. At the nanoscale, small complexes are formed with low affinity. After initial unfavorable complex assembly, additional monomers are added with higher affinity. At the mesoscale, assembly resembles classical homogeneous nucleation. Careful multi-pronged characterization is required for the understanding of condensate assembly mechanisms and will promote understanding of how the kinetics of biological phase separation is encoded in biomolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.