We observe that there is an equivalence between the singularity category of an affine complete intersection and the homotopy category of matrix factorizations over a related scheme. This relies in part on a theorem of Orlov. Using this equivalence, we give a geometric construction of the ring of cohomology operators, and a generalization of the theory of support varieties, which we call stable support sets. We settle a question of Avramov about which stable support sets can arise for a given complete intersection ring. We also use the equivalence to construct a projective resolution of a module over a complete intersection ring from a matrix factorization, generalizing the well-known result in the hypersurface case.
We study matrix factorizations of regular global sections of line bundles on schemes. If the line bundle is very ample relative to a Noetherian affine scheme we show that morphisms in the homotopy category of matrix factorizations may be computed as the hypercohomology of a certain mapping complex. Using this explicit description, we prove an analogue of Orlov's theorem that there is a fully faithful embedding of the homotopy category of matrix factorizations into the singularity category of the corresponding zero subscheme. Moreover, we give a complete description of the image of this functor.
We give a complete description of the cone of Betti diagrams over a standard graded hypersurface ring of the form k[x, y]/ q , where q is a homogeneous quadric. We also provide a finite algorithm for decomposing Betti diagrams, including diagrams of infinite projective dimension, into pure diagrams. Boij-Söderberg theory completely describes the cone of Betti diagrams over a standard graded polynomial ring; our result provides the first example of another graded ring for which the cone of Betti diagrams is entirely understood. * β R 0,0 (M ) β R
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.