Aim To present an updated database of fish species recorded on south‐western Atlantic reef environments and to explore the ecological drivers of the structure, the latitudinal gradient of biodiversity and the centre of endemism in this peripheral province. Location South‐western Atlantic (SWA): Brazilian and Argentinian Provinces. Methods A database composed of 733 fish species along 23 locations in the SWA (00°55′ N to 43°00′ S) was compiled based on primary data, literature and museum records. Cluster and beta diversity analyses were carried out to evaluate faunal overlaps among locations and subprovinces. “Target‐area‐distance effect” and “stepping stones dispersal” hypotheses for assemblage composition were tested through Mantel tests. Relationships between the distribution patterns and ecological traits of reef fish species were investigated through generalized linear mixed‐effect models. Results Out of the 733 fish species, 405 are SWA resident reef fishes, of which 111 (27%) are endemics and 78 are threatened with extinction. Cluster analysis detected six subprovinces in the SWA structured following the target‐area‐distance model, and with no evidence for a latitudinal gradient in diversity. The greatest overall richness and endemic species richness were found in the east–south‐eastern region. Depth range, habitat use and body size were the main drivers of SWA reef fish assemblage structure. Main conclusions The Brazilian and Argentinian coasts constitute different provinces structured by oceanographic barriers and environmental filters. Similarities among oceanic islands indicate connectivity driven by stochastic and ecological factors. Species richness and endemism indicate that peripheral provinces may also bear centres of origin and biodiversity, patterns driven by parapatric/ecological speciation and the overlap between tropical and subtropical reef fish species. Ecological drivers of reef fish distribution, such as habitat specialization and body size, support hypotheses of speciation in the periphery. New approaches for spatial planning, marine protected areas and off‐reserve marine management are essential for the conservation and sustainability of SWA reef fishes.
Centropomus Lacépède, 1802 comprises 13 species of the fishes popularly knows as snooks, distributed in both Atlantic and Pacific coasts of America. Despite several studies on the group, conflicting taxonomic classifications still exist, including overlapping diagnostic characters, rendering species diagnoses extremely difficult. Herein, we review the taxonomy of Centropomus to elucidate species identities, redefine their diagnoses and to assess interspecific relationships based on the examination of 376 specimens. The study included complementary approaches, as analyses of external morphologic characters, linear and geometric morphometrics, and molecular analyses. Forty-nine characters were used for external morphology, 17 discrete plus 32 linear measurements. Shape and size were analyzed through geometric morphometrics of 185 specimens in lateral view. Partial sequences of the gene cytochrome c oxidase I were obtained for 129 specimens representing 11 species. Based on the consistent results retrieved from the morphologic and molecular analyses, we recognized six species of Centropomus from the Atlantic coast (C. ensiferus, C. irae, C. parallelus, C. pectinatus, C. poeyi and C. undecimalis). Centropomus mexicanus is treated as a junior synonym of C. parallelus. Six species from the Pacific coast are also tentatively recognized (C. armatus, C. medius, C. nigrescens, C. robalito, C. unionensis, and C. viridis), however further studies on the Pacific species are still needed. Information on type material, diagnosis, distribution, and taxonomic comments are provided for each species. An identification key to the species of Centropomus is presented.
The Neotropical region hosts 4225 freshwater fish species, ranking first among the world's most diverse regions for freshwater fishes. Our NEOTROPICAL FRESHWATER FISHES data set is the first to produce a large‐scale Neotropical freshwater fish inventory, covering the entire Neotropical region from Mexico and the Caribbean in the north to the southern limits in Argentina, Paraguay, Chile, and Uruguay. We compiled 185,787 distribution records, with unique georeferenced coordinates, for the 4225 species, represented by occurrence and abundance data. The number of species for the most numerous orders are as follows: Characiformes (1289), Siluriformes (1384), Cichliformes (354), Cyprinodontiformes (245), and Gymnotiformes (135). The most recorded species was the characid Astyanax fasciatus (4696 records). We registered 116,802 distribution records for native species, compared to 1802 distribution records for nonnative species. The main aim of the NEOTROPICAL FRESHWATER FISHES data set was to make these occurrence and abundance data accessible for international researchers to develop ecological and macroecological studies, from local to regional scales, with focal fish species, families, or orders. We anticipate that the NEOTROPICAL FRESHWATER FISHES data set will be valuable for studies on a wide range of ecological processes, such as trophic cascades, fishery pressure, the effects of habitat loss and fragmentation, and the impacts of species invasion and climate change. There are no copyright restrictions on the data, and please cite this data paper when using the data in publications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.