Additively manufactured austenitic stainless steels exhibit numerous microstructural and morphological differences compared to their wrought counterparts that will influence the metals corrosion resistance. The characteristic as-printed surface roughness of powder bed fusion (PBF) stainless steel parts is one of these morphological differences that increases the parts susceptibility to localized corrosion. This study experimentally determines the average surface roughness and breakdown potential (E b) for PBF 316L in 6 surface finished states: as-printed, ground with SiC paper, tumble polished in abrasive media, electro-polished, chemically passivated, and the application of a contour/re-melt scan strategy. In general, a smaller average surface roughness led to a larger E b. The smoothest surface treatments, ground and electro-polished conditions, led to E b near the materials limit (~+1.0 V Ag/AgCl) while all other surface treatments exhibited significantly lower E b (~+0.3 V Ag/AgCl) The build angle was also shown to impact surface roughness, where surfaces at high angles from the build direction resulted in larger roughness values, hence lower E b .
Additively manufactured (AM) stainless steels exhibit numerous microstructural differences compared to their wrought counterparts, such as Cr enriched dislocation cell structures. The influence these unique features have on a SSs corrosion resistance are still under investigation with most current works limited to laboratory experiments. The work herein shows the first documented study of AM 304L and 316L exposed to a severe marine environment on the eastern coast of Florida with comparisons made to wrought counterparts. Coupons were exposed for 21 months and resulted in significant pitting corrosion to initiate after 1 month of exposure for all conditions. At all times, the AM coupons exhibited lower average and maximum pit depths than their wrought counterparts. After 21 months, pits on average were 4 μm deep for AM 316L specimen and 8 μm deep for wrought specimen. Pits on the wrought samples tended to be nearly hemispherical and polished with some pits showing crystallographic attack while pits on AM coupons exhibited preferential attack at melt pool boundaries and the cellular microstructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.