Data activism has emerged as a response to asymmetries in how data and the means of knowledge production are distributed. This article examines MyData, a data activism initiative developing principles for a new technical and commercial ecosystem in which individuals control the use of personal data. Analyzing material collected at a formative event shaping MyData activism, we examine how more just data arrangements are framed to enhance equal participation. Our analysis shows agreement on what is ultimately at stake: individual data agency and fair competition in the data economy. However, two alternatives are offered for what participation involves. Collaboration with commercial actors favors framing participation as agency in data markets, thereby potentially limiting the scope of what is at stake. The alternative framing presents a rights-based understanding of economic and civic agency, potentially leading to a broader understanding of participation in a datafied society.
Hate speech has been identified as a pressing problem in society and several automated approaches have been designed to detect and prevent it. This paper reports and reflects upon an action research setting consisting of multi-organizational collaboration conducted during Finnish municipal elections in 2017, wherein a technical infrastructure was designed to automatically monitor candidates' social media updates for hate speech. The setting allowed us to engage in a 2-fold investigation. First, the collaboration offered a unique view for exploring how hate speech emerges as a technical problem. The project developed an adequately well-working algorithmic solution using supervised machine learning. We tested the performance of various feature extraction and machine learning methods and ended up using a combination of Bag-of-Words feature extraction with Support-Vector Machines. However, an automated approach required heavy simplification, such as using rudimentary scales for classifying hate speech and a reliance on word-based approaches, while in reality hate speech is a linguistic and social phenomenon with various tones and forms. Second, the action-research-oriented setting allowed us to observe affective responses, such as the hopes, dreams, and fears related to machine learning technology. Based on participatory observations, project artifacts and documents, interviews with project participants, and online reactions to the detection project, we identified participants' aspirations for effective automation as well as the level of neutrality and objectivity introduced by an algorithmic system. However, the participants expressed more critical views toward the system after the monitoring process. Our findings highlight how the powerful expectations related to technology can easily end up dominating a project dealing with a contested, topical social issue. We conclude by discussing the problematic aspects of datafying hate and suggesting some practical implications for hate speech recognition.
Scholarship on algorithms has drawn on the analogy between algorithmic systems and bureaucracies to diagnose shortcomings in algorithmic decision-making. We extend the analogy further by drawing on Michel Crozier's theory of bureaucratic organizations to analyze the relationship between algorithmic and human decision-making power. We present algorithms as analogous to impartial bureaucratic rules for controlling action, and argue that discretionary decision-making power in algorithmic systems accumulates at locations where uncertainty about the operation of algorithms persists. This key point of our essay connects with Alkhatib and Bernstein's theory of 'street-level algorithms', and highlights that the role of human discretion in algorithmic systems is to accommodate uncertain situations which inflexible algorithms cannot handle. We conclude by discussing how the analysis and design of algorithmic systems could seek to identify and cultivate important sources of uncertainty, to enable the human discretionary work that enhances systemic resilience in the face of algorithmic errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.