The dihydrogen adsorption isotherms of eight metal-organic frameworks (MOFs), measured at 77 K up to a pressure of 1 atm, have been examined for correlations with their structural features. All materials display approximately Type I isotherms with no hysteresis, and saturation was not reached for any of the materials under these conditions. Among the six isoreticular MOFs (IRMOFs) studied, the catenated materials exhibit the largest capacities on a molar basis, up to 9.8 H(2) per formula unit. The addition of functional groups (-Br, -NH(2), -C(2)H(4)-) to the phenylene links of IRMOF-1 (MOF-5), or their replacement with thieno[3,2-b]thiophene moieties in IRMOF-20, altered the adsorption behavior by a minor amount despite large variations in the pore volumes of the resulting materials. In contrast, replacement of the metal oxide units with those containing coordinatively unsaturated metal sites resulted in greater H(2) uptake. The enhanced affinities of these materials, MOF-74 and HKUST-1, were further demonstrated by calculation of the isosteric heats of adsorption, which were larger across much of the range of coverage examined, compared to those of representative IRMOFs. The results suggest that under low-loading conditions, the H(2) adsorption behavior of MOFs can be improved by imparting larger charge gradients on the metal oxide units and adjusting the link metrics to constrict the pore dimensions; however, a large pore volume is still a prerequisite feature.
Increased attention is being focused on metal–organic frameworks as candidates for hydrogen storage materials. This is a result of their many favorable attributes, such as high porosity, reproducible and facile syntheses, amenability to scale‐up, and chemical modification for targeting desired properties. A discussion of several strategies aimed at improving hydrogen uptake in these materials is presented. These strategies include the optimization of pore size and adsorption energy by linker modification, impregnation, catenation, and the inclusion of open metal sites and lighter metals.
Five porous metal-organic frameworks based on linking zinc oxide clusters with benzene-1,4-dicarboxylate, naphthalene-2,6-dicarboxylate, 4,5,9,10-tetrahydropyrene-2,7-dicarboxylate, 2,3,5,6-tetramethylbenzene-1,4-dicarboxylate, or benzene-1,3,5-tris(4-benzoate) were synthesized in gram-scale quantities to measure their hydrogen uptake properties. Hydrogen adsorption isotherms measured at 77 K show a distinct dependence of uptake on the nature of the link. At 1 atm, the materials sorb between 4.2 and 9.3 molecules of H2 per formula unit. The results imply a trend in hydrogen uptake with the number of rings in the organic moiety.
The primary adsorption sites for Ar and N2 within metal-organic framework-5, a cubic structure composed of Zn4O(CO2)6 units and phenylene links defining large pores 12 and 15 angstroms in diameter, have been identified by single-crystal x-ray diffraction. Refinement of data collected between 293 and 30 kelvin revealed a total of eight symmetry-independent adsorption sites. Five of these are sites on the zinc oxide unit and the organic link; the remaining three sites form a second layer in the pores. The structural integrity and high symmetry of the framework are retained throughout, with negligible changes resulting from gas adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.