Selective Androgen Receptor Modulators (SARMs) are not FDA approved, and obtaining SARMs for personal use is illegal. Nevertheless, SARM use is increasingly popular amongst recreational athletes. Recent case reports of drug-induced liver injury (DILI) and tendon rupture raise serious concerns for the safety of recreational SARM users. On 10 November 2022 PubMed, Scopus, Web of Science, and ClinicalTrials.gov were searched for studies that reported safety data of SARMs. A multi-tiered screening approach was utilized, and any study or case report of generally healthy individuals exposed to any SARM was included. Thirty-three studies were included in the review with 15 case reports or case series and 18 clinical trials (total patients N = 2136 patients, exposed to SARM N = 1447). There were case reports of drug-induced liver injury (DILI) (N = 15), Achilles tendon rupture (N = 1), rhabdomyolysis (N = 1), and mild reversible liver enzyme elevation (N = 1). Elevated alanine aminotransferase (ALT) was commonly reported in clinical trials in patients exposed to SARM (mean 7.1% across trials). Two individuals exposed to GSK2881078 in a clinical trial were reported to have rhabdomyolysis. Recreational SARM use should be strongly discouraged, and the risks of DILI, rhabdomyolysis, and tendon rupture should be emphasized. However, despite warnings, if a patient refuses to discontinue SARM use, ALT monitoring or dose reduction may improve early detection and prevention of DILI.
Introduction Personalized medicine is the right treatment, to the right patient, at the right dose. Knowledge of genetic predisposition to variable metabolism and distribution of drugs within the body is currently available as pharmacogenomic testing and is one of the pillars of personalized medicine. Pharmacogenomic testing is growing. It has become part of guidelines for dosing on FDA labels and has been used by health care organizations to improve outcomes and reduce adverse events. Additionally, it has been FDA approved for direct-to-consumer purchase and has been cause of concern of patient self-dosing and medication changes. Presumably in the near future, pharmacogenomics will be impressed upon the military health system (MHS) provider from either a top-down, command requested, or from a bottom-up, patient requested, approach. To date, widespread implementation of pharmacogenomic testing does not seem to be established within the MHS. This survey sheds light on the knowledge, exposure, use, comfort, and interest among family medicine providers in the MHS. It compares similar results in other national and international surveys and compares results among a small subset of residents to staff. Materials and Methods The questions were part of a larger survey conducted by the Clinical Investigations Committee of the Uniformed Services Academy of Family Physicians (USAFP) at the USAFP 2019 annual meeting. The study received approval from the Uniformed Services University Institutional Review Board. Submitted questions were written using multiple choice, fill-in, five-point Likert scale, and best answer. Direct results are reported as well as chi-square statistics for categorical data with statistical significance to attain a P-value of < 0.05. Results Among the 532 USAFP-registered conference attendees eligible to complete the survey, 387 attendees responded to the survey, for a response rate of 72.7%. Some results included were a knowledge question in which 37% of respondents answered correctly. Less than half of respondents agreed that they could define pharmacogenomics, and resident respondents were more likely to have received teaching in graduate medical education. Additionally, 12% of providers responded to being exposed to direct-to-consumer results, and 28% of those exposed were influenced to change medications, while 14% were influenced to change medications on multiple occasions. Chi-square comparisons resulted in statistically significant direct relationships to exposure to direct to consumer testing, previous training, and confidence of those that answered the knowledge question correctly. Conclusions This survey establishes a baseline for the possible needs associated with implementation of a pharmacogenomic program, and it argues an actionable level for the use of pharmacogenomics among the patient population within the MHS.
What is known and Objective Osteoarthritis (OA) is a common cause of joint disease and activity limitation in adults. Common therapies to treat OA‐related pain are oral and topical non‐steroidal anti‐inflammatory drugs (NSAIDs) and intra‐articular (IA) corticosteroids. However, prolonged courses of oral NSAIDs are associated with systemic adverse effects and repeat IA corticosteroid injections may cause cartilage degeneration. IA NSAIDs may be an alternative therapy possibly minimizing systemic side effects while maintaining efficacy. Therefore, we sought to summarize the pharmacokinetics, safety and efficacy of IA NSAIDs to help providers make a more informed decision on the use of IA NSAIDs. Methods We searched the National Library of Medicine Database with terms “intraarticular and nsaid”, yielding 1032 results. Only traditional formulations of NSAIDs were considered for inclusion. Animal studies were included if animals were healthy or if the method of arthritis induction was a reasonable model of osteoarthritis. Human studies were included if humans were healthy or if the primary disease studied was osteoarthritis of a large joint. Of 1032 results, 31 research articles met the inclusion criteria and were summarized in this review. Results and Discussion We found that single doses of IA NSAIDs provided far less total systemic and synovial exposure compared to a one week course of oral NSAIDs, but maximum concentrations to the synovium with IA administration were much higher. IA NSAIDs had an excellent safety profile in small animals, large animals and humans, although these injections were associated with non‐specific cartilage inflammation in healthy animals. In animal models, IA NSAIDs had similar efficacy to PO NSAIDs in treating OA‐related pain. In humans, IA NSAIDs had similar efficacy to PO NSAIDS and IA corticosteroids in treating OA‐related pain; however, many trials did not have a placebo control and outcome measures were heterogeneous. What is new and Conclusion Overall, single doses of IA NSAIDs appear safe and efficacious across animals and humans. The optimal use of IA NSAIDs is still to be determined and further research is needed. However IA NSAIDs may be an additional beneficial therapy to treat OA‐related pain. Potential uses may be to augment IA corticosteroids injections, to interrupt multiple IA corticosteroid injections or as an alternative in patients that are high risk for corticosteroid‐related adverse events.
We describe the use of ultrasound guidance for hyperosmolar dextrose (prolotherapy) injection of the distal calcaneal tendon specifically just anterior to identified enthesophytes in patients with insertional Achilles calcific tendinosis refractory to conservative treatment. This specific technique has not to our knowledge been described or used in literature previously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.