Butterflies and moths (Lepidoptera) are one of the major superradiations of insects, comprising nearly 160,000 described extant species. As herbivores, pollinators, and prey, Lepidoptera play a fundamental role in almost every terrestrial ecosystem. Lepidoptera are also indicators of environmental change and serve as models for research on mimicry and genetics. They have been central to the development of coevolutionary hypotheses, such as butterflies with flowering plants and moths’ evolutionary arms race with echolocating bats. However, these hypotheses have not been rigorously tested, because a robust lepidopteran phylogeny and timing of evolutionary novelties are lacking. To address these issues, we inferred a comprehensive phylogeny of Lepidoptera, using the largest dataset assembled for the order (2,098 orthologous protein-coding genes from transcriptomes of 186 species, representing nearly all superfamilies), and dated it with carefully evaluated synapomorphy-based fossils. The oldest members of the Lepidoptera crown group appeared in the Late Carboniferous (∼300 Ma) and fed on nonvascular land plants. Lepidoptera evolved the tube-like proboscis in the Middle Triassic (∼241 Ma), which allowed them to acquire nectar from flowering plants. This morphological innovation, along with other traits, likely promoted the extraordinary diversification of superfamily-level lepidopteran crown groups. The ancestor of butterflies was likely nocturnal, and our results indicate that butterflies became day-flying in the Late Cretaceous (∼98 Ma). Moth hearing organs arose multiple times before the evolutionary arms race between moths and bats, perhaps initially detecting a wide range of sound frequencies before being co-opted to specifically detect bat sonar. Our study provides an essential framework for future comparative studies on butterfly and moth evolution.
Anthropogenic noise is an important environmental stressor that is rapidly gaining attention among biologists, resource managers, and policy makers. Here we review a substantial literature detailing the impacts of noise on wildlife and provide a conceptual framework to guide future research. We discuss how several likely impacts of noise exposure have yet to be rigorously studied and outline how behavioral responses to noise are linked to the nature of the noise stimulus. Chronic and frequent noise interferes with animals' abilities to detect important sounds, whereas intermittent and unpredictable noise is often perceived as a threat. Importantly, these effects can lead to fitness costs, either directly or indirectly. Future research should consider the range of behavioral and physiological responses to this burgeoning pollutant and pair measured responses with metrics that appropriately characterize noise stimuli. This will provide a greater understanding of the mechanisms that govern wildlife responses to noise and help in identifying practical noise limits to inform policy and regulation.
28Human activities have caused a near-ubiquitous and evolutionarily-unprecedented increase in 29 environmental sound levels and artificial night lighting. These stimuli reorganize communities 30 by interfering with species-specific perception of time cues, habitat features, and auditory and 31 visual signals. Rapid evolutionary changes could occur in response to light and noise, given their 32 magnitude, geographical extent, and degree to which they represent unprecedented 33 environmental conditions. We present a framework for investigating anthropogenic light and 34 noise as agents of selection, and as drivers of other evolutionary processes, to influence a range 35 of behavioural and physiological traits, such as phenological characters and sensory and 36 signalling systems. In this context, opportunities abound for understanding contemporary and 37 rapid evolution in response to human-caused environmental change. The overcast night sky radiance in urban areas has been found to be as much as four orders of 55 magnitude larger than in natural settings (Figure 1) [5]. Similarly, increased noise levels affect a 56 sizable proportion of the human population. In Europe for instance, 65% of the population is 57 exposed to ambient sound levels exceeding 55 dB(A) [6], roughly equivalent to constant rainfall. 58Of the land in the contiguous U.S., 88% is estimated to experience elevated sound levels from 59 anthropogenic noise (Figure 1) [7]. These effects are not limited to terrestrial environments; 60 ocean noise levels are estimated to have increased by 12 decibels (an ~16-fold increase in sound 61 intensity) in the past few decades from commercial shipping alone [8], while an estimated 22% 62 of the global coastline is exposed to artificial light [3] and many offshore coral reefs are 63 chronically exposed to artificial lighting from cities, fishing boats, and hydrocarbon extraction 64 [9]. 65The changes in light at night and noise levels are occurring on a global scale similar to 66 well-recognized ecological and evolutionary forces such as land cover and climate change. In 67 4 parallel with research involving climate change [10], much of our understanding of organismal 68 response to noise and light is restricted to short-term behavioural reactions. Organismal 69 responses might be associated with tolerance to these stimuli in terms of habitat use [11,12] Status of research on anthropogenic light and sound in ecology 98Night lighting and noise are highly correlated in many landscapes (e.g., [21]). It is critical to 99 understand whether the selective pressures these stimuli exert are additive, synergistic (Figure 2), 100 or if they mitigate one another. Few studies have examined the influence of each simultaneously 101 (e.g., [21]). In one study, flashing lights combined with boat motor noise suppressed antipredator 102 behaviour in hermit crabs (Coenobita clypeatus) more so than noise alone [22]. Future research 103 should quantify both light and sound simultaneously in the same population. Existing r...
Many authors have suggested that the negative effects of roads on animals are largely owing to traffic noise. Although suggestive, most past studies of the effects of road noise on wildlife were conducted in the presence of the other confounding effects of roads, such as visual disturbance, collisions and chemical pollution among others. We present, to our knowledge, the first study to experimentally apply traffic noise to a roadless area at a landscape scale-thus avoiding the other confounding aspects of roads present in past studies. We replicated the sound of a roadway at intervals-alternating 4 days of noise on with 4 days off-during the autumn migratory period using a 0.5 km array of speakers within an established stopover site in southern Idaho. We conducted daily bird surveys along our 'Phantom Road' and in a nearby control site. We document over a one-quarter decline in bird abundance and almost complete avoidance by some species between noise-on and noise-off periods along the phantom road and no such effects at control sites-suggesting that traffic noise is a major driver of effects of roads on populations of animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.