Precipitated silica was tested for suitibility as core material for vacuum insulation. • A guarded hot plate apparatus, measuring under vacuum conditions, was developed. • Mercury intrusion porosimetry data were used to calculate gas-thermal conductivity. • Model to predict thermal conductivity is presented (focus on coupling effect).
Due to reduced thermal conductivity, vacuum insulation panels (VIPs) provide significant thermal insulation performance. Our novel vacuum panels operate at reduced pressure and are filled with a powder of precipitated silicic acid to further hinder convection and provide static stability against atmospheric pressure. To obtain an in depth understanding of heat transfer mechanisms, their interactions and their dependencies inside VIPs, detailed microscale simulations are conducted.Particle characteristics for silica are used with a discrete element method (DEM) simulation, using open source software Yade-DEM, to generate a periodic compressed packing of precipitated silicic acid particles. This aggregate packing is then imported into OpenLB (openlb.net) as a fully resolved geometry, and used to study the effects on heat transfer at the microscale. A three dimensional Lattice Boltzmann method (LBM) for conjugated heat transfer is implemented with open source software OpenLB, which is extended to include radiative heat transport. The infrared intensity distribution is solved and coupled with the temperature through the emissivity, absorption and scattering of the studied media using the radiative transfer equation by means of LBM. This new holistic approach provides a distinct advantage over similar porous media approaches by providing direct control and tuning of particle packing characteristics such as aggregate size, shape and pore size distributions and studying their influence directly on conduction and radiation independently. Our aim is to generate one holistic tool which can be used to generate silica geometry and then simulate automatically the thermal conductivity through the generated geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.