This study examines the use of a passively actuated trailing edge of a thin wing during oscillation motion. The integration of a flexible trailing edge with an oscillating wing has the ability to alter the transient lift and drag characteristics, as well as the time averaged values. The results are obtained for a chord-length based Reynolds number of 0 and 40,000, and at oscillation frequencies of 0.5 and 1 Hz. The non-dimensional heaving amplitude is fixed at 0.25 and the pitching is 20°. The flexibility of the trailing edge is controlled by a torsion rod between the main wing and the trailing edge. Three conditions are evaluated: a very stiff rod (essentially non-flexible trailing edge), a moderately flexible rod and a very flexible rod. Results obtained indicate that lift and drag have a shift in the time averaged values, where the drag and lift both decrease as the trailing edge flexibility increases. These findings have application to both enhanced propulsion and energy harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.