Morphological phylogenetic analyses suggest that scalidophorans (priapulids, loriciferans, and kinorhynchs) and nematoids (nematodes and nematomorphs) form the ecdysozoan clade Cycloneuralia, which is a sister group to panarthropods. It has been proposed that extant priapulids and Cambrian priapulid-like scalidophorans, because of their conserved evolution, have the potential to illuminate the ancestral morphology, ecology, and developmental biology of highly derived ecdysozoans such as nematods and arthropods. As such, Cambrian fossils, particularly Markuelia and possibly olivooids, can inform the early evolution of scalidophorans, cycloneuralians, and ecdysozoans. However, the scalidophoran Markuelia is known exclusively as embryo fossils, and the olivooids have been alternatively interpreted as cnidarians or cycloneuralians. Here, we describe a post-embryonic scalidophoran fossil Eopriapulites sphinx new genus and species, which represents the oldest known scalidophoran, from the early Cambrian Period (∼535 Ma) in South China. E. sphinx is similar to modern scalidophorans in having an introvert armed with hollow scalids, a collar with coronal scalids, and a pharynx with pharyngeal teeth, but its scalids and pharyngeal teeth are arranged in a hexaradial pattern. Phylogenetically resolved as a stem-group scalidophoran, E. sphinx shares a hexaradial pattern with the hexaradial arrangement of certain anatomical structures in kinorhynchs, loriciferans, nematoids, and Cambrian fossils such as Eolympia pediculata, which could also be a scalidophoran. Thus, the bodyplan of ancestral cycloneuralians may have had a component of hexaradial symmetry (i.e., some but not necessarily all anatomical parts are hexaradially arranged). If panarthropods are nested within paraphyletic cycloneuralians, as several molecular phylogenetic analyses suggest, the ancestral ecdysozoans may have been a legless worm possibly with a component of hexaradial symmetry.
Geologic deposits containing fossils with remains of non-biomineralized tissues (i.e. Konservat-Lagerstätten) provide key insights into ancient organisms and ecosystems. Such deposits are not evenly distributed through geologic time or space, suggesting that global phenomena play a key role in exceptional fossil preservation. Nonetheless, establishing the influence of global phenomena requires documenting temporal and spatial trends in occurrences of exceptionally preserved fossil assemblages. To this end, we compiled and analyzed a dataset of 694 globally distributed exceptional fossil assemblages spanning the history of complex eukaryotic life (~610 to 3 Ma). Our analyses demonstrate that assemblages with similar ages and depositional settings commonly occur in clusters, each signifying an ancient geographic region (up to hundreds of kilometers in scale), which repeatedly developed conditions conducive to soft tissue preservation. Using a novel hierarchical clustering approach, we show that these clusters decrease in number and shift from open marine to transitional and nonmarine settings across the Cambrian-Ordovician interval. Conditions conducive to exceptional preservation declined worldwide during the early Paleozoic in response to transformations of near-surface environments that promoted degradation of tissues and curbed authigenic mineralization potential. We propose a holistic explanation relating these environmental transitions to ocean oxygenation and bioturbation, which affected virtually all taphonomic pathways, in addition to changes in seawater chemistry that disproportionately affected processes of soft tissue conservation. After these transitions, exceptional preservation rarely occurred in open marine settings, excepting times of widespread oceanic anoxia, when low oxygen levels set the stage. With these patterns, nonmarine cluster count is correlated with non-marine rock quantity, and generally decreases with age. This result suggests that geologic processes, which progressively destroy terrestrial rocks over time, limit sampling of non-marine deposits on a global scale. Future efforts should aim to assess the impacts of such phenomena on evolutionary and ecological patterns in the fossil record.
Geologic deposits containing fossils with remains of non-biomineralized tissues (i.e. Konservat-Lagerstätten) provide key insights into ancient organisms and ecosystems. Such deposits are not evenly distributed through geologic time or space, suggesting that global phenomena play a key role in exceptional fossil preservation. Nonetheless, establishing the influence of global phenomena requires documenting temporal and spatial trends in occurrences of exceptionally preserved fossil assemblages. To this end, we compiled and analyzed a dataset of 694 globally distributed exceptional fossil assemblages spanning the history of complex eukaryotic life (~610 to 3 Ma). Our analyses demonstrate that assemblages with similar ages and depositional settings commonly occur in clusters, each signifying an ancient geographic region (up to hundreds of kilometers in scale), which repeatedly developed conditions conducive to soft tissue preservation. Using a novel hierarchical clustering approach, we show that these clusters decrease in number and shift from open marine to transitional and nonmarine settings across the Cambrian-Ordovician interval. Conditions conducive to exceptional preservation declined worldwide during the early Paleozoic in response to transformations of near-surface environments that promoted degradation of tissues and curbed authigenic mineralization potential. We propose a holistic explanation relating these environmental transitions to ocean oxygenation and bioturbation, which affected virtually all taphonomic pathways, in addition to changes in seawater chemistry that disproportionately affected processes of soft tissue conservation. After these transitions, exceptional preservation rarely occurred in open marine settings, excepting times of widespread oceanic anoxia, when low oxygen levels set the stage. With these patterns, nonmarine cluster count is correlated with non-marine rock quantity, and generally decreases with age. This result suggests that geologic processes, which progressively destroy terrestrial rocks over time, limit sampling of non-marine deposits on a global scale. Future efforts should aim to assess the impacts of such phenomena on evolutionary and ecological patterns in the fossil record.
This paper addresses the taphonomic processes responsible for fossil preservation in calcium phosphate, or phosphatization. Aside from silicification and rarer examples of carbonaceous compression, phosphatization is the only taphonomic mode claimed to preserve putative subcellular structures. Because this fossilization window can record such valuable information, a comprehensive understanding of its patterns of occurrence and the geochemical processes involved in the replication of soft tissues are critical endeavors. Fossil phosphatization was most abundant during the latest Neoproterozoic through the early Paleozoic, coinciding with the decline of non-pelletal phosphorite deposits. Its temporal abundance during this timeframe makes it a particularly valuable window for the study of early animal evolution. Several occurrences of phosphatization from the Ediacaran through the Permian Period, including Doushantuo-type preservation of embryo-like fossils and acritarchs, phosphatized gut tracts within Burgess Shale-type carbonaceous compressions, Orsten-type preservation of meiofaunas, and other cases from the later Paleozoic are reviewed. In addition, a comprehensive description of the geochemical controls of calcium phosphate precipitation from seawater is provided, with a focus on the rates of phosphate nucleation and growth, favorable nucleation substrates, and properties of substrate tissue and pore-fluid chemistry. It is hoped that the paleontological and geochemical summaries provided here offer a practical and valuable guide to the Neoproterozoic–Paleozoic phosphatization window.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.