A better understanding of the role of the Arabidopsis ZIP family of micronutrient transporters is necessary in order to advance our understanding of plant Zn, Fe, Mn, and Cu homeostasis. In the current study, the 11 Arabidopsis ZIP family members not yet well characterized were first screened for their ability to complement four yeast mutants defective in Zn, Fe, Mn, or Cu uptake. Six of the Arabidopsis ZIP genes complemented a yeast Zn uptake-deficient mutant, one was able partially to complement a yeast Fe uptake-deficient mutant, six ZIP family members complemented an Mn uptake-deficient mutant, and none complemented the Cu uptake-deficient mutant. AtZIP1 and AtZIP2 were then chosen for further study, as the preliminary yeast and in planta analysis suggested they both may be root Zn and Mn transporters. In yeast, AtZIP1 and AtZIP2 both complemented the Zn and Mn uptake mutants, suggesting that they both may transport Zn and/or Mn. Expression of both genes is localized to the root stele, and AtZIP1 expression was also found in the leaf vasculature. It was also found that AtZIP1 is a vacuolar transporter, while AtZIP2 is localized to the plasma membrane. Functional studies with Arabidopsis AtZIP1 and AtZIP2 T-DNA knockout lines suggest that both transporters play a role in Mn (and possibly Zn) translocation from the root to the shoot. AtZIP1 may play a role in remobilizing Mn from the vacuole to the cytoplasm in root stellar cells, and may contribute to radial movement to the xylem parenchyma. AtZIP2, on the other hand, may mediate Mn (and possibly Zn) uptake into root stellar cells, and thus also may contribute to Mn/Zn movement in the stele to the xylem parenchyma, for subsequent xylem loading and transport to the shoot.
Nontraumatic osteonecrosis continues to be a challenging problem causing debilitating major joint diseases. The etiology is multifactorial, but steroid- and alcohol-induced osteonecrosis contribute to more than two thirds of all cases with genetic risk factors playing an important role in many other cases, especially when they contribute to hypercoagulable states. While the exact mechanisms remain elusive, many new insights have emerged from research in the last decade that have given us a clearer picture of the pathogenesis of nontraumatic osteonecrosis of the femoral head. Progression to end stage osteonecrosis of the femoral head appears to be related to four main factors: interactions involving the differentiation pathway of osteoprogenitor cells that promote adipogenesis, decreased angiogenesis, direct suppression of osteogenic gene expression and proliferation of bone marrow stem cells, and genetic anomalies or other diseases that promote hypercoagulable states.
The combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF), and bone morphogenetic protein (BMP) to sites of bone injury results in enhanced repair compared to the administration of a single factor or a combination of two factors. Based on these findings, we hypothesized that coexpression of VEGF and BMP-6 genes would enhance the osteoblastic differentiation of rat bone-marrow-derived stem cells (rMSCs) and osteogenesis by comparison to rMSCs that do not express VEGF and BMP-6. We prepared a GFP tagged adenovirus vector (Ad-VEGF+BMP-6) that contained DNA encoding the hVEGF and hBMP-6 genes. rMSCs were transduced with the virus, and the successful transduction was confirmed by green fluorescence and by production of VEGF and BMP-6 proteins. The cells were cultured to assess osteoblastic differentiation or administered in the Fischer 344 rats to assess bone formation. Mineralization of rMSCs transduced with Ad-VEGF+BMP-6 was significantly enhanced over the nontransduced rMSCs. Only transduced rMSCs could induce osteogenesis in vivo, whereas Ad-VEGF+BMP-6 or nontransduced rMSCs alone did not induce osteogenesis. The data suggests that the combined delivery of MSCs, VEGF, and BMP-6 is an attractive option for bone repair therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.