This article describes an effort to create a coherent teacher recruitment, preparation and induction program in a large urban school district, based in part on the medical residency model. The article argues for several core principles in the creation of such a program: a) the program serves the school district, b) the program is structured to blend theory and practice, c) the program emphasizes the selection, recruitment and support of the mentor teacher and treats the mentors as teacher educators, d) the program creates an aligned set of induction supports which extend for the first three years of the new teacher’s career, e) the program treats student achievement as its ultimate outcome.
Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by motor neuron death in the central nervous system. Vitamin D supplementation increases antioxidant activity, reduces inflammation and improves motor neuron survival. We have previously demonstrated that vitamin D3 supplementation at 10× the adequate intake improves functional outcomes in a mouse model of ALS.ObjectiveTo determine whether vitamin D deficiency influences functional and disease outcomes in a mouse model of ALS.MethodsAt age 25 d, 102 G93A mice (56 M, 46 F) were divided into two vitamin D3 groups: 1) adequate (AI; 1 IU D3/g feed) and 2) deficient (DEF; 0.025 IU D3/g feed). At age 113 d, tibialis anterior (TA), quadriceps (quads) and brain were harvested from 42 mice (22 M and 20 F), whereas the remaining 60 mice (34 M and 26 F) were followed to endpoint.ResultsDuring disease progression, DEF mice had 25% (P = 0.022) lower paw grip endurance AUC and 19% (P = 0.017) lower motor performance AUC vs. AI mice. Prior to disease onset (CS 2), DEF mice had 36% (P = 0.016) lower clinical score (CS) vs. AI mice. DEF mice reached CS 2 six days later vs. AI mice (P = 0.004), confirmed by a logrank test which revealed that DEF mice reached CS 2 at a 43% slower rate vs. AI mice (HR = 0.57; 95% CI: 0.38, 1.74; P = 0.002). Body weight-adjusted TA (AI: r = 0.662, P = 0.001; DEF: r = 0.622, P = 0.006) and quads (AI: r = 0.661, P = 0.001; DEF: r = 0.768; P<0.001) weights were strongly correlated with age at CS 2.ConclusionVitamin D3 deficiency improves early disease severity and delays disease onset, but reduces performance in functional outcomes following disease onset, in the high-copy G93A mouse.
There is no consensus among research laboratories around the world on the criteria that define endpoint in studies involving rodent models of amyotrophic lateral sclerosis (ALS). Data from 4 nutrition intervention studies using 162 G93A mice, a model of ALS, were analyzed to determine if differences exist between the following endpoint criteria: CS 4 (functional paralysis of both hindlimbs), CS 4+ (CS 4 in addition to the earliest age of body weight loss, body condition deterioration or righting reflex), and CS 5 (CS 4 plus righting reflex >20 s). The age (d; mean ± SD) at which mice reached endpoint was recorded as the unit of measurement. Mice reached CS 4 at 123.9±10.3 d, CS 4+ at 126.6±9.8 d and CS 5 at 127.6±9.8 d, all significantly different from each other (P<0.001). There was a significant positive correlation between CS 4 and CS 5 (r = 0.95, P<0.001), CS 4 and CS 4+ (r = 0.96, P<0.001), and CS 4+ and CS 5 (r = 0.98, P<0.001), with the Bland-Altman plot showing an acceptable bias between all endpoints. Logrank tests showed that mice reached CS 4 24% and 34% faster than CS 4+ (P = 0.046) and CS 5 (P = 0.006), respectively. Adopting CS 4 as endpoint would spare a mouse an average of 4 days (P<0.001) from further neuromuscular disability and poor quality of life compared to CS 5. Alternatively, CS 5 provides information regarding proprioception and severe motor neuron death, both could be important parameters in establishing the efficacy of specific treatments. Converging ethics and discovery, would adopting CS 4 as endpoint compromise the acquisition of insight about the effects of interventions in animal models of ALS?
BackgroundWe previously demonstrated that dietary vitamin D3 at 10x the adequate intake (AI) attenuates the decline in functional capacity in the G93A mouse model of ALS. We hypothesized that higher doses would elicit more robust changes in functional and disease outcomes.ObjectiveTo determine the effects of dietary vitamin D3 at 50xAI on functional outcomes (motor performance, paw grip endurance) and disease severity (clinical score), as well as disease onset, disease progression and lifespan in the transgenic G93A mouse model of ALS.MethodsStarting at age 25 d, 100 G93A mice (55 M, 45 F) were provided ad libitum with either an adequate (AI; 1 IU D3/g feed) or high (HiD; 50 IU D3/g feed) vitamin D3 diet.ResultsHiD females consumed 9% less food corrected for body weight vs. AI females (P = 0.010). HiD mice had a 12% greater paw grip endurance over time between age 60–141 d (P = 0.015), and a 37% greater score during disease progression (P = 0.042) vs. AI mice. Although HiD females had a non-significant 31% greater CS prior to disease onset vs. AI females, they exhibited a significant 20% greater paw grip endurance AUC (P = 0.020) when corrected for clinical score.ConclusionDietary D3 supplementation at 50x the adequate intake attenuated the decline in paw grip endurance, but did not influence age at disease onset, hindlimb paralysis or endpoint in the transgenic G93A mouse model of ALS. Furthermore, females may have reached the threshold for vitamin D3 toxicity as evidence by reduced food intake and greater disease severity prior to disease onset.
BackgroundDietary vitamin D3 (D3) restriction reduces paw grip endurance and motor performance in G93A mice, and increases inflammation and apoptosis in the quadríceps of females. ALS, a neuromuscular disease, causes progressive degeneration of motor neurons in the brain and spinal cord.ObjectiveWe analyzed the spinal cords of G93A mice following dietary D3 restriction at 2.5% the adequate intake (AI) for oxidative damage (4-HNE, 3-NY), antioxidant enzymes (SOD2, catalase, GPx1), inflammation (TNF-α, IL-6, IL-10), apoptosis (bax/bcl-2 ratio, cleaved/pro-caspase 3 ratio), neurotrophic factor (GDNF) and neuron count (ChAT, SMI-36/SMI-32 ratio).MethodsBeginning at age 25 d, 42 G93A mice were provided food ad libitum with either adequate (AI;1 IU D3/g feed; 12 M, 11 F) or deficient (DEF; 0.025 IU D3/g feed; 10 M, 9 F) D3. At age 113 d, the spinal cords were analyzed for protein content. Differences were considered significant at P ≤ 0.10, since this was a pilot study.ResultsDEF mice had 16% higher 4-HNE (P = 0.056), 12% higher GPx1 (P = 0.057) and 23% higher Bax/Bcl2 ratio (P = 0.076) vs. AI. DEF females had 29% higher GPx1 (P = 0.001) and 22% higher IL-6 (P = 0.077) vs. AI females. DEF males had 23% higher 4-HNE (P = 0.066) and 18% lower SOD2 (P = 0.034) vs. AI males. DEF males had 27% lower SOD2 (P = 0.004), 17% lower GPx1 (P = 0.070), 29% lower IL-6 (P = 0.023) and 22% lower ChAT (P = 0.082) vs. DEF females.ConclusionD3 deficiency exacerbates disease pathophysiology in the spinal cord of G93A mice, the exact mechanisms are sex-specific. This is in accord with our previous results in the quadriceps, as well as functional and disease outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.