Recent evidence shows that some amino acids and their metabolites are important regulators of key metabolic pathways that are necessary for maintenance, growth, feed intake, nutrient utilization, immunity, behavior, larval metamorphosis, reproduction, as well as resistance to environmental stressors and pathogenic organisms in various fishes. Therefore, conventional definitions on essential and nonessential amino acids for fish are challenged by numerous discoveries that taurine, glutamine, glycine, proline and hydroxyproline promote growth, development, and health of aquatic animals. On the basis of their crucial roles in cell metabolism and physiology, we anticipate that dietary supplementation with specific amino acids may be beneficial for: (1) increasing the chemo-attractive property and nutritional value of aquafeeds with low fishmeal inclusion; (2) optimizing efficiency of metabolic transformation in juvenile and sub-adult fishes; (3) surpressing aggressive behaviors and cannibalism; (4) increasing larval performance and survival; (5) mediating timing and efficiency of spawning; (6) improving fillet taste and texture; and (7) enhancing immunity and tolerance to environmental stresses. Functional amino acids hold great promise for development of balanced aquafeeds to enhance the efficiency and profitability of global aquaculture production.
In recent decades, aquaculture nutrition research has made major strides in identifying alternatives to the use of traditional marine‐origin resources. Feed manufacturers worldwide have used this information to replace increasing amounts of fish meal and fish oil in aquafeeds. However, reliance on marine resources remains an ongoing constraint, and the progress yielded by continued unidimensional research into alternative raw materials is becoming increasingly marginal. Feed formulation is not an exercise in identifying “substitutes” or “alternatives” but rather is a process of identifying different combinations of “complementary” raw materials—including fish meal, fish oil, and others—that collectively meet established nutrient requirements and other criteria for the aquafeed in question. Nutrient‐based formulation is the day‐to‐day reality of formulating industrially compounded aquafeeds, but this approach is less formally and explicitly addressed in aquaculture research and training programs. Here, we (re)introduce these topics and explore the reasons that marine‐origin ingredients have long been considered the “gold standards” of aquafeed formulation. We highlight a number of ways in which this approach is flawed and constrains innovation before delving into the need to assess raw materials based on their influence on aquafeed manufacturing techniques. We conclude with a brief commentary regarding the future funding and research landscape. Incremental progress may continue through the accumulation of small insights, but a more holistic research strategy—aligned with industry needs and focused on nutrient composition and ingredient complementarity—is what will spur future advancement in aquaculture nutrition.
Fatty acid (FA) composition of fillet tissue can be tailored by transitioning fish from alternative lipid-based, low long-chain polyunsaturated fatty acid (LC-PUFA) grow-out feeds to high LC-PUFA "finishing" feeds. To address whether grow-out feed composition influences the responsiveness of fillet tissue to finishing, sunshine bass (SB, Morone chrysops x M. saxatilis) were reared to a submarketable size on grow-out feeds containing fish oil (FO) or a 50:50 blend of FO and coconut (CO), grapeseed (GO), linseed (LO), or poultry (PO) oil. For the final 8 weeks of the trial, fish were either maintained on assigned grow-out feeds or finished with the 100% FO feed. Production performance was unaffected by dietary lipid source, but fillet FA profile generally conformed to nutritional history. Regardless of grow-out regimen, finishing had a significant restorative effect on fillet FA composition; however, complete restoration of control levels of 20:5n-3, 22:6n-3, total LC-PUFA and n-3:n-6 FA ratio was achieved only among fish fed the CO-based grow-out feed. Saturated fatty acids (SFA) appear to be preferential catabolic substrates, whereas medium-chain and long-chain PUFA are selectively deposited in tissues. Provision of SFA in grow-out feeds appears to optimize selective FA metabolism and restoration of beneficial fillet FA profile during finishing.
Currently, in the United States, there are few sedatives available to fisheries professionals that are safe, effective, and practical. Chemical sedatives, including tricaine methanesulfonate (MS‐222), carbon dioxide (CO2), benzocaine, and eugenol may be used to sedate fish, though none of these compounds are currently approved by the U.S. Food and Drug Administration as immediate‐release fish sedatives. Another option is the use of electricity to temporarily immobilize fish. Few studies have assessed the efficacy of these options for immediate‐release sedation in side‐by‐side comparisons. We evaluated the use of MS‐222 (150 mg/L), CO2 (∼400 mg/L), benzocaine (150 mg/L), eugenol (60 mg/L), and a commercially available electrosedation unit (30 Hz pulsed DC, 60 V, 25% duty cycle, 3‐s exposures) to induce hybrid striped bass (white bass Morone chrysops × striped bass M. saxatilis; 510 ± 12 g [mean ± SE]) to stage IV anesthesia or sedation. Induction times were shortest (0.2 ± 0.1 min) when electrosedation was used and longest (2.5 ± 0.1 min) when CO2 was used; the induction times for the other chemical sedatives varied (<2 min). Recovery times were longest for eugenol (5.2 ± 0.4 min postinduction) and benzocaine (4.0 ± 0.4 min); however, the difference in recovery time between these two treatments was not significant or between recovery times for benzocaine and the remaining sedatives (∼3–4 min). Physiological responses varied but were consistent with the generalized stress response. Circulating levels of cortisol, glucose, and lactate increased after sedation, and though response magnitude and duration varied somewhat among these variables, these changes were resolved within 6 h. Changes in plasma osmolality and hematocrit were less overt and varied less among the sedatives. Electrosedation may be a suitable tool for quickly sedating hybrid striped bass; however, all of the sedatives evaluated were effective at the doses and strengths used and some may be better suited to certain applications than to others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.