In the yeast S. cerevisiae, ribosome assembly is linked to environmental conditions by the coordinate transcriptional regulation of genes required for ribosome biogenesis. In this study we show that two nonessential stress-responsive genes, YAR1 and LTV1, function in 40S subunit production. We provide genetic and biochemical evidence that Yar1, a small ankyrin-repeat protein, physically interacts with RpS3, a component of the 40S subunit, and with Ltv1, a protein recently identified as a substoichiometric component of a 43S preribosomal particle. We demonstrate that cells lacking YAR1 or LTV1 are hypersensitive to particular protein synthesis inhibitors and exhibit aberrant polysome profiles, with a reduced absolute number of 40S subunits and an excess of free 60S subunits. Surprisingly, both mutants are also hypersensitive to a variety of environmental stress conditions. Overexpression of RPS3 suppresses both the stress sensitivity and the ribosome biogenesis defect of ⌬yar1 mutants, but does not suppress either defect in ⌬ltv1 mutants. We propose that YAR1 and LTV1 play distinct, nonessential roles in 40S subunit production. The stresssensitive phenotypes of strains lacking these genes reveal a hitherto unknown link between ribosome biogenesis factors and environmental stress sensitivity.
Summary Mutagenesis of group B streptococcus (GBS) withTn phoZ , a transposon designed to identify secreted protein genes, identified the gene homologues fhuD and fhuG . The encoded proteins participate in siderophore (hydroxamate)-dependent iron(III) transport in other bacterial species. Sequence analysis of the genome determined that fhuD and fhuG are members of a polycistronic operon comprised of four genes, fhuCDBG , that encode a putative ATPase, cell surface receptor and two transmembrane proteins respectively. We hypothesized that FhuD was a siderophore receptor. Western analysis of cell extracts localized FhuD to the bacterial cell membrane. Fluorescence quenching experiments determined that purified FhuD bound hydroxamate-type siderophores. FhuD displayed highest affinity for iron(III)-desferroxamine, with a K D (µ µ µ µ M) = = = = 0.05, identical to that described for FhuD2 from Staphylococcus aureus . The role of Fhu in siderophore-iron transport was also characterized. A fhu mutant, ACFhu1, was equally sensitive to the iron-dependent antibiotic streptonigrin as the wildtype strain, suggesting that ACFhu1 was not reduced for intracellular iron concentrations in the absence of exogenous siderophore. However, ACFhu1 transported significantly less siderophore-bound iron in 55 Fe accumulation assays. These data provide the first evidence of siderophore-mediated iron acquisition by GBS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.