SUMMARY
Obesity and nutrient homeostasis are linked by mechanisms that are not fully elucidated. Here we describe a secreted protein, adropin, encoded by a gene, Energy Homeostasis Associated (Enho), expressed in liver and brain. Liver Enho expression is regulated by nutrition: lean C57BL/6J mice fed high-fat diet (HFD) exhibited a rapid increase, while fasting reduced expression compared to controls. However, liver Enho expression declines with diet-induced obesity (DIO) associated with 3 months of HFD or with genetically induced obesity, suggesting an association with metabolic disorders in the obese state. In DIO mice, transgenic overexpression or systemic adropin treatment attenuated hepatosteatosis and insulin resistance independently of effects on adiposity or food intake. Adropin regulated expression of hepatic lipogenic genes and adipose tissue peroxisome proliferator-activated receptor gamma, a major regulator of lipogenesis. Adropin may therefore be a factor governing glucose and lipid homeostasis, which protects against hepatosteatosis and hyperinsulinemia associated with obesity.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Current evidence suggests that hypothalamic fatty acid metabolism may play a role in regulating food intake; however, confirmation that it is a physiologically relevant regulatory system of feeding is still incomplete. Here, we use pharmacological and genetic approaches to demonstrate that the physiological orexigenic response to ghrelin involves specific inhibition of fatty acid biosynthesis induced by AMP-activated protein kinase (AMPK) resulting in decreased hypothalamic levels of malonyl-CoA and increased carnitine palmitoyltransferase 1 (CPT1) activity. In addition, we also demonstrate that fasting downregulates fatty acid synthase (FAS) in a region-specific manner and that this effect is mediated by an AMPK and ghrelin-dependent mechanisms. Thus, decreasing AMPK activity in the ventromedial nucleus of the hypothalamus (VMH) is sufficient to inhibit ghrelin's effects on FAS expression and feeding. Overall, our results indicate that modulation of hypothalamic fatty acid metabolism specifically in the VMH in response to ghrelin is a physiological mechanism that controls feeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.