Dendritic cells (DCs) have several characteristics that make them an ideal vehicle for tumor vaccines, and with the first US FDA-approved DC-based vaccine in use for the treatment of prostate cancer, this technology has become a promising new therapeutic option. However, DC-based vaccines face several barriers that have limited their effectiveness in clinical trials. A major barrier includes the activation state of the DC. Both DC lineage and maturation signals must be selected to optimize the antitumor response and overcome immunosuppressive effects of the tumor microenvironment. Another barrier to successful vaccination is the selection of target antigens that will activate both CD8+ and CD4+ T cells in a potent, immune-specific manner. Finally, tumor progression and immune dysfunction limit vaccine efficacy in advanced stages, which may make DC-based vaccines more efficacious in treating early-stage disease. This review underscores the scientific basis and advances in the development of DC-based vaccines, focuses on current barriers to success and highlights new research opportunities to address these obstacles.
Dendritic cells (DC), master antigen-presenting cells that orchestrate interactions between the adaptive and innate immune arms, are increasingly utilized in cancer immunotherapy. Despite remarkable progress in our understanding of DC immunobiology, as well as several encouraging clinical applications – such as DC-based sipuleucel-T for metastatic castration-resistant prostate cancer – clinically effective DC-based immunotherapy as monotherapy for a majority of tumors remains a distant goal. The complex interplay between diverse molecular and immune processes that govern resistance to DC-based vaccination compels a multimodality approach, encompassing a growing arsenal of antitumor agents which target these distinct processes and synergistically enhance DC function. These include antibody-based targeted molecular therapies, immune checkpoint inhibitors, therapies that inhibit immunosuppressive cellular elements, conventional cytotoxic modalities, and immune potentiating adjuvants. It is likely that in the emerging era of “precision” cancer therapeutics, tangible clinical benefits will only be realized with a multifaceted – and personalized – approach combining DC-based vaccination with adjunctive strategies.
Vaccination strategies incorporating the immunodominant HLA-A2-restricted HER2/neu-derived peptide 369-377 (HER2369-377) are increasingly utilized in HER2/neu-expressing cancer patients. The failure of post-vaccination HER2369-377-specific CD8+ T cells to recognize HLA-A2posHER2/neu-expressing cells in vitro, however, has been attributed to impaired MHC class I/HLA-A2 presentation observed in HER2/neu-overexpressing tumors. We reconcile this controversy by demonstrating that HER2369-377 is directly recognized by high functional-avidityHER2369-377-specific CD8+ T cells—either genetically modified to express a novel HER2369-377-TCR or sensitized using HER2369-377-pulsed type 1-polarized dendritic cells (DC1)—on class I-abundant HER2low, but not class I-deficient HER2high, cancer cells. Importantly, a critical cooperation between CD4+ T-helper type-1 (Th1) cytokines IFNγ/TNFα and HER2/neu-targeted antibody trastuzumab is necessary to restore class I expression in HER2high cancers, thereby facilitating recognition and lysis of these cells by HER2369-377-specific CD8+ T cells. Concomitant induction of PD-L1 on HER2/neu-expressing cells by IFNγ/TNF and trastuzumab, however, has minimal impact on DC1-sensitized HER2369-377-CD8+ T cell-mediated cytotoxicity. Although activation of EGFR and HER3 signaling significantly abrogates IFNγ/TNFα and trastuzumab-induced class I restoration, EGFR/HER3 receptor blockade rescues class I expression and ensuing HER2369-377-CD8+ cytotoxicity of HER2/neu-expressing cells. Thus, combinations of CD4+ Th1 immune interventions and multivalent targeting of HER family members may be required for optimal anti-HER2/neuCD8+ T cell-directed immunotherapy.
Laparoscopic removal of a large gastric trichobezoar is technically feasible through small incisions without requiring port-site extension or limited midline laparotomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.