Background The clinical course of Campylobacter infection varies in symptoms and severity depending on host factors, virulence of the pathogen and initiated therapy. The type VI secretion system (T6SS) has been identified as a novel virulence factor, which mediates contact-dependent injection of enzymes and toxins into competing bacteria or host cells and facilitates the colonisation of a host organism. We aimed to compare the clinical course of Campylobacter infection caused by strains with and without the T6SS and identify possible associations between this putative virulence factor and the clinical manifestations of disease. Methods From April 2015 to January 2017, patients with detection of Campylobacter spp. were identified at the University Hospital of Basel and the University Children’s Hospital of Basel and included in this case-control study. Presence of the T6SS gene cluster was assayed by PCR targeting the hcp gene, confirmed with whole genome sequencing. Pertinent clinical data was collected by medical record review. Differences in disease- and host-characteristics between T6SS-positive (case) and –negative (control) were compared in a uni- and multi-variable analysis. Hospital admission, antibiotic therapy, admission to intensive care unit, development of bacteraemia and in-hospital mortality were considered as clinical endpoints. Results We identified 138 cases of Campylobacter jejuni infections and 18 cases of Campylobacter coli infections from a paediatric and adult population. Analyses were focused on adult patients with C. jejuni ( n = 119) of which 16.8% were T6SS-positive. Comparisons between T6SS-positive and -negative C. jejuni isolates did not reveal significant differences regarding clinical manifestations or course of disease. All clinical endpoints showed a similar distribution in both groups. A higher score in the Charlson Comorbidity Index was associated with T6SS-positive C. jejuni isolates ( p < 0.001) and patients were more likely to have a solid organ transplant and to be under immunosuppressive therapy. Conclusions Our study does not provide evidence that T6SS is associated with a more severe clinical course. Interestingly, T6SS-positive isolates are more commonly found in immunocompromised patients: an observation which merits further investigation. Electronic supplementary material The online version of this article (10.1186/s12879-019-3858-x) contains supplementary material, which is available to authorized users.
Background Rapid pathogen identification from positive blood cultures may help optimize empiric antibiotic therapy quickly by reducing unnecessary broad spectrum antibiotic use and may improve patient outcomes. The BioFire® FilmArray® Blood Culture Identification Panel 1 (BF-FA-BCIP) identifies 24 pathogens directly from positive blood cultures without subculture. 3 resistance genes are included. We aimed to compare the time to optimal antibiotic therapy between BF-FA-BCIP and conventional identification. Methods We performed a single-center retrospective case-control before-after study of 386 cases (November 2018 to October 2019) with BF-FA-BCIP compared to 414 controls (August 2017 to July 2018) with conventional identification. The primary study endpoint was the time from blood sampling to implementation of optimal antimicrobial therapy. Secondary endpoints were time to effective therapy, length of hospital stay, and in-hospital and 30-day mortality. Outcomes were assessed using cause-specific Cox Proportional Hazard models and logistic regressions. Results We included 800 patients with comparable baseline characteristics. Main sources of blood stream infection (BSI) were urinary tract infection and intra-abdominal infection (19.2% vs. 22.0% and 16.8% vs. 15.7% for case and control groups, respectively). Overall, 212 positive blood cultures were considered as contaminations. Identification results were available after a median of 21.9 hours by the BF-FA-BCIP and 44.3 hours by the conventional method. Patients with BF-FA-BCIP received the optimal therapy after a median of 25.5 hours (95%CI 21.0 - 31.2) as compared to 45.7 hours (95%CI 37.7 - 51.2) in the control group (Figure 1). We found no effect of the identification method on secondary outcomes. Kaplan-Meier curve representing the probability of implementing the optimal therapy at any given time according to the identification method (Standard vs. BF-FA-BCIP). Shaded ribbons represent the 95 % confidence interval (CI). The vertical dashes represent censored data. The vertical dotted lines represent the median time, i.e. the time at which 50 % of the patients obtained the optimal therapy, for the two methods. Median (95 % CI) time to optimal therapy is 45.7 (37.7 - 51.4) hours with the Standard method and 25.5 (21.0- 31.2) hours with Biofire. The tables below the curves present the numbers expecting optimal therapy according to the bacteria identification method, as well as the number of censored data in parenthesis. Panel A shows data from 0 to 900 hours. Panel B shows the data from 0 to 90 hours to better visualize how the probability to implement optimal therapy varies in the first 72 hours. Conclusion In conclusion, rapid pathogen identification by BF-FA-BCIP was associated with an almost 24h earlier initiation of the optimal antibiotic therapy in BSI. However, the overall benefit for individual patients seems to be limited. Future studies should assess the cost-effectiveness and impact on the prevention of antibiotic resistance using this diagnostic approach. Disclosures All Authors: No reported disclosures
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.