Plants are attacked by multiple insect pest species and insect herbivory can alter plant defense mechanisms. The plant defense responses to a specific herbivore may also contribute to the herbivore growth/survival on plants. Feeding by one insect species can modulate the plant defenses, which can either facilitate or hamper the colonization of subsequent incoming insects. However, little is known about the effect of sequential herbivory on sorghum plants. In this study, we demonstrate that a specialist aphid, sugarcane aphid (SCA; Melanaphis sacchari) grows faster on sorghum than a generalist aphid species, greenbug (GB; Schizaphis graminum). We also determined how the pre-infestation of SCA on sorghum affected the invasion of GB and vice-versa. Our sequential herbivory experiments revealed that SCA reproduction was lower on GB-primed sorghum plants, however, the reverse was not true. To assess the differences in plant defenses induced by specialist vs. generalist aphids, we monitored the expression of salicylic acid (SA) and jasmonic acid (JA) marker genes, and flavonoid biosynthetic pathway genes after 48 h of aphid infestation. The results indicated that GB infestation induced higher expression of SA and JA-related genes, and flavonoid pathway genes (DFR, FNR, and FNSII) compared to SCA infestation. Overall, our results suggested that GB-infested plants activate the plant defenses via phytohormones and flavonoids at early time points and hampers the colonization of incoming SCA, as well as explain the reproductive success of SCA compared to GB.
In insects, larval and adult defences against predators have been well studied. However, pupal (also known as resting stage) defences have been overlooked and not examined thoroughly. Although some pupa possess anti-predator strategies such as hairs, spines, cryptic coloration, and exudation of chemicals, few studies have tested these responses, and the factors affecting them. Here, we investigated the behavioural responses in tobacco hornworm Manduca sexta that pupates in soil, by introducing an external stimulus using vibrations from an electric toothbrush, to mimic predation. We observed that M. sexta made violent wriggling (twitching), followed by pulsating movements in response to the vibrational stimulus. Detailed examination showed that these twitches and pulsating events occurred more frequently and for longer periods of time in male pupa and were dependent on the magnitude of the stress (high and low frequency). However, when we estimated the angular force exerted by pupa using radian and angular momentum of twitches, it was found to be independent of pupal sex. A follow-up experiment on possible cascading effects of stress exposure on eclosion success revealed that low and high frequency stress exposure didn’t cause any of the common defects in eclosed adults. Our study clearly demonstrates that the so-called defenceless pupal stage uses a wide range of measurable defence behaviours that can actively defend against predators and should be examined further-linking observed behaviour with underlying mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.