A new method for the 18 F-radiolabeling of aromatic compounds based on the aromatic nucleophilic substitution (S N Ar) reaction using triarylsulfonium salts has been developed. Experiments and DFT calculations indicated that sulfonium ions have the potential to be optimized for labeling nonactivated and deactivated aryl rings that have Hammett σ P substituent constants greater than -0.170. This method is
Methods for the radiolabeling molecules of interest with [18F]-fluoride need to be rapid, convenient, and efficient. Numerous [18F]-labeled prosthetic groups, e.g., N-succinimidyl 4 [18F]-fluorobenzoate ([18F]-SFB), 4-azidophenacyl-[18F]-fluoride ([18F]-APF), and 1-(3-(2-[18F]fluoropyridin-3-yloxy)propyl)pyrrole-2,5-dione ([18F]-FpyMe), for conjugating to biomolecules have been developed. As the synthesis of these prosthetic groups usually requires multistep procedures, there is still a need for direct methods for the nucleophilic [18F]-fluorination of biomolecules. We report here on the development of a procedure based on the trimethylammonium (TMA) leaving group attached to an aromatic ring and activated with different electron-withdrawing groups (EWGs). A series of model compounds containing different electron-withdrawing substituents, a trimethylammonium leaving group, and carboxylic functionality for subsequent coupling to peptides were designed and synthesized. The optimal model compound, 2-cyano-4-(methoxycarbonyl)-N,N,N-trimethylbenzenaminium trifluoromethanesulfonate, was converted to carboxylic acid and coupled to peptides. The results of the one-step [18F]-fluorination of tetrapeptides and bombesin peptides show that the direct 18F-labeling of peptides is feasible under mild conditions and in good radiochemical yields.
The gastrin-releasing peptide receptor (GRPR) is overexpressed on a number of human tumors and has been targeted with radiolabeled bombesin analogues for the diagnosis and therapy of these cancers. Seven bombesin analogues containing various linkers and peptide sequences were designed, synthesized, radiolabeled with (18)F, and characterized in vitro and in vivo as potential PET imaging agents. Binding studies displayed nanomolar binding affinities toward human GRPR for all synthesized bombesin analogues. Two high-affinity peptide candidates 6b (K(i) = 0.7 nM) and 7b (K(i) = 0.1 nM) were chosen for further in vivo evaluation. Both tracers revealed specific uptake in GRPR-expressing PC-3 tumors and the pancreas. Compared to [(18)F]6b, compound [(18)F]7b was characterized by superior tumor uptake, higher specificity of tracer uptake, and more favorable tumor-to-nontarget ratios. In vivo PET imaging allowed for the visualization of PC-3 tumor in nude mice suggesting that [(18)F]7b is a promising PET tracer candidate for the diagnosis of GRPR-positive tumors in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.