Latent heat thermal energy storage (LHTES) systems can be used to combat the limited collection and long-term storage of renewable energy sources. The key component of an LHTES system is its phase change material (PCM), which thermally stores energy. Despite extensive research on thermal conductivity enhancement within PCM, little attention has been paid to the heat transfer fluid (HTF) within the system. This study aimed to observe the impact of variable HTF flow rates and temperatures on the speed of charging and discharging an LHTES system enhanced with annular fins. Two copper fin configurations of 10 and 20 annular fins were tested within an LHTES system with Rubitherm RT-55 PCM. The configurations were tested during charging processes with HTF parameters of 65 °C and 70 °C at 1, 2, and 3 gpm. Discharging processes were tested with HTF parameters of 15 °C and 20 °C at 0.5, 1, and 1.5 gpm. The system energy response and PCM temperature were recorded throughout the tests. The results of the study revealed that a higher flow rate produced a shorter processing time, but furthermore, that a larger temperature gradient between the PCM and HTF caused a more significant decrease in charging and discharging times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.