Brazilian soybean cultivars (Glycine max Sambaíba and Tracajá) routinely grown in Amazonian areas were exposed to filtered air (FA) and filtered air enriched with ozone (40 and 80 ppb, 6 h/day for 5 days) to assess their level of tolerance to this pollutant by measuring changes in key biochemical, physiological, and morphological indicators of injury and in enzymatic and non-enzymatic antioxidants. Sambaíba plants were more sensitive to ozone than Tracajá plants, as revealed by comparing indicator injury responses and antioxidant stimulations. Sambaíba exhibited higher visible leaf injury, higher stomatal conductance, and a severe decrease in the carbon assimilation rate. Higher ozone level (80 ppb) caused an increase in cell death in both cultivars. Levels of malondialdehyde and hydrogen peroxide also increased in Tracajá exposed under 80 ppb. Sambaíba plants exhibited decreases in ascorbate and glutathione levels and in enzymatic activities associated with these antioxidants. The higher tolerance of the Tracajá soybean appeared to be indicated by reduced physiological injuries and lower stomatal conductance, which might decrease the influx of ozone and enhance oxidation-reduction reactions involving catalase, ascorbate peroxidase, ascorbate, and glutathione, most likely stimulated by higher hydrogen peroxide.
This study aimed to analyze critically the potential of Ipomoea nil'Scarlet O'Hara' for O(3) biomonitoring in the sub-tropics. Four field experiments (one in each season of 2006) were carried out in a location of the city of São Paulo mainly polluted by O(3). Each experiment started with 50 plants, and lasted 28 days. Sub-lots of five plants were taken at intervals between three or four days long. Groups of four plants were also exposed in closed chambers to filtered air or to 40, 50 or 80 ppb of O(3) for three consecutive hours a day for six days. The percentage of leaf injury (interveinal chloroses and necroses), the concentrations of ascorbic acid (AA) and the activity of superoxide dismutase (SOD) and peroxidases (POD) were determined in the 5th, 6th and 7th oldest leaves on the main stem of the plants taken in all experiments. Visible injury occurred in the plants from all experiments. Seasonality in the antioxidant responses observed in plants grown under field conditions was associated with meteorological variables and ozone concentrations five days before leaf analyses. The highest levels of antioxidants occurred during the spring. The percentage of leaf injury was explained (R(2) = 0.97, p < 0.01) by the reduction in the levels of AA and activity of POD five days before the leaf analyses and by the reduction in the levels of particulate matter, and enhancement of temperature and global radiation 10 days before this same day. Although I. nil may be employed for qualitative O(3) biomonitoring, its efficiency for quantitative biomonitoring in the sub-tropics may be compromised, depending on how intense the oxidative power of the environment is.
This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.