In recent years, artficial intelligence, through the rapid development of machine learning and deep learning, has started to be used in different sectors, even in academic research. The objective of this study is a reflection on the possible errors that can occur when the analysis of human behavior and the development of academic research rely on artificial intelligence. To understand what errors artificial intelligence can make more easily, three cases have been analyzed: the use of the IMPACT system for the evaluation of school system in the District of Columbia Public Schools (DCPS) in Washington, the face detection system, and the “writing” of the first scientific text by artificial intelligence. In particular, this work takes into consideration the systematic errors due to the polarization of data with which the machine learning models are trained, the absence of feedback and the problem of minorities who cannot be represented through the use of big data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.