A general theory of the deflagration-to-detonation transition is presented along with its experimental and numerical confirmation, as well as its application to Type Ia supernovae.The nature of type Ia supernovae (SNIa) -thermonuclear explosions of white dwarf stars -is an open question in astrophysics. Virtually all existing theoretical models of normal, bright SNIa require the explosion to produce a detonation in order to consume all of stellar material, but the mechanism for the deflagration-to-detonation transition (DDT) remains unclear. We present a unified theory of turbulence-induced DDT that describes the mechanism and conditions for initiating detonation both in unconfined chemical and thermonuclear explosions. The model is validated using experiments with chemical flames and numerical simulations of thermonuclear flames. We use the 1 arXiv:1911.00050v1 [astro-ph.HE]
One of the fundamental mechanisms for detonation initiation is deflagration-to-detonation transition (DDT). This research experimentally explores the runaway condition for highly turbulent fast flames before DDT, which are characterized by extremely high turbulent flame speeds. Such fast turbulent flames experience increased effects of compressibility and may develop a runaway acceleration combined with a pressure buildup that leads to a turbulence-induced DDT (tDDT) mechanism that has been recently reported. The flame dynamics and the associated reacting flow field are characterized using simultaneous high-speed particle image velocimetry, OH* chemiluminescence, pressure measurements, and schlieren imaging. We study the flow-field conditions for runaway acceleration of fast turbulent flames and effects of compressibility on the evolution of these flames. The locally measured turbulent flame speed is found to be greater than that of a Chapman–Jouguet deflagration speed, which places the flame in the runaway transition regime that would eventually lead to a detonation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.