A workflow is presented that integrates gene expression data, proteomic data, and literature-based manual curation to construct multicellular, tissue-specific models of human brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types. Three analyses are applied for gene identification, analysis of omics data, and analysis of physiological states. First, we identify glutamate decarboxylase as a target that may contribute to cell-type and regional specificity in Alzheimer’s disease. Second, the decreased metabolic rate seen in affected brain regions in Alzheimer’s disease is consistent with a suppression of central metabolic gene expression in histopathologically normal neurons. Third, we identify pathways in cholinergic neurons that couple mitochondrial metabolism and cytosolic acetylcholine production, and subsequently find that cholinergic neurotransmission accounts for ∼3% of brain neurotransmission. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in human tissues, and provide detailed mechanistic insight into high-throughput data analysis.
Patients after allogeneic hematopoietic SCT (HSCT) are at risk of malnutrition. To assess the impact of malnutrition after allogeneic HSCT on transplant outcomes, we conducted a retrospective study. Adult patients who received allogeneic HSCT from 2000 to 2009 for standard-risk leukemia and achieved disease-free survival up to 3 months after allogeneic HSCT were included. From participating centers, 145 patients were enrolled. Median age was 46 years (19-68). Patients were classified based on weight loss during 3 months after allogeneic HSCT as follows: normal group (weight loss o 5%, n = 53), mild malnutrition group (5% ⩽ weight loss o 10%, n = 47), severe malnutrition group (10% ⩽ weight loss, n = 45). The cumulative incidences of 2-year nonrelapse mortality (NRM) were 3.8% in the normal group, 8.5% in the mild malnutrition group and 27.3% in the severe malnutrition group. The probabilities of a 2-year OS were 73.2% in the normal group, 74.5% in the mild malnutrition group and 55.3% in the severe malnutrition group. In multivariate analysis, severe malnutrition was associated with an increased risk of NRM and a worse OS. In conclusion, weight loss ⩾ 10% was associated with a worse clinical outcome. Prospective studies that identify patients at risk of malnutrition and intervention by a nutritional support team are warranted.
Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC.
Adiponectin (APN) is an adipocyte-secreted adipokine that exerts well-characterized anti-diabetic properties. Patients with type 2 diabetes (T2D) are characterized by reduced APN levels in circulation and impaired stem cell and progenitor cell mobilization from the bone marrow for tissue repair and remodeling. In this study, we found that APN regulates the mobilization and recruitment of bone marrow-derived mesenchymal stem cells (BMSCs) to participate in tissue repair and regeneration. APN facilitated BMSCs migrating from the bone marrow into the circulation to regenerate bone by regulating stromal cell-derived factor (SDF)-1 in a mouse bone defect model. More importantly, we found that systemic APN infusion ameliorated diabetic mobilopathy of BMSCs, lowered glucose concentration and promoted bone regeneration in diet-induced obesity (DIO) mice. In vitro studies allowed us to identify Smad1/5/8 as a novel signaling mediator of APN receptor (AdipoR)-1 in BMSCs and osteoblasts. APN stimulation of MC3T3-E1 osteoblastic cells led to Smad1/5/8 phosphorylation and nuclear localization and increased SDF-1 mRNA expression. Although APN-mediated phosphorylation of Smad1/5/8 occurred independently from adaptor protein, phosphotyrosine interaction, pleckstrin homology domain and leucine zipper containing 1 (APPL1), it correlated with the disassembly of protein kinase casein kinase II (CK2) and AdipoR1 in immunoprecipitation experiments. Taken together, this study identified APN as a regulator of BMSCs migration in response to bone injury. Therefore, our findings suggest APN signaling could be a potential therapeutic target to improve bone regeneration and homeostasis, especially in obese and T2D patients.
BackgroundSOX4 is a developmental transcription factor that is required for differentiation and proliferation in multiple tissues. SOX4 is overexpressed in many human malignancies, but the precise role of SOX4 in cancer progression is still not well understood. Thus, the identification of additional SOX4 binding partners is essential for elucidating the mechanism of SOX4-mediated effects in cancer progression.ResultsHere, we have adapted a one-step affinity purification method that enables rapid purification of SOX4 complexes via intracellular biotinylation of the amino-terminus of SOX4 to perform large-scale proteomics analysis. We have discovered that junction plakoglobin (JUP) interacts with SOX4 in both the cytosol and the nucleus and the interaction between SOX4 and plakoglobin is significantly increased when prostate and breast cancer cells are stimulated with WNT3A. Interactions between SOX4 and plakoglobin were further enhanced by the nuclear export inhibitor leptomycin B (LMB), suggesting that plakoglobin promotes nuclear export of SOX4. The SOX4-plakoglobin complex affected the expression of Wnt pathway target genes and SOX4 downstream targets, such as AXIN2, DICER1, and DHX9. In addition, SOX4 DNA binding activity to the promoters of DICER1, AXIN2, DHX9 and SOX4 itself was reduced by conditions that promote SOX4-plakoglobin complex formation. Conditions that enhanced SOX4-plakoglobin interactions resulted in reduced transcriptional activity of β-catenin luciferase reporters.ConclusionsThese data suggest that this newly identified interaction between SOX4 and plakoglobin is inhibitory and provides new insights into the role of SOX4 in key pathways in cell proliferation, development, and cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.