Hydrogels pose unique challenges to nanoindentation including sample preparation, control of experimental parameters, and limitations imposed by mechanical testing instruments and data analysis originally intended for harder materials. The artifacts that occur during nanoindentation of hydrated samples have been described, but the material properties obtained from hydrated nanoindentation have not yet been related to the material properties obtained from macroscale testing. To evaluate the best method for correlating results from microscale and macroscale tests of soft materials, nanoindentation and unconfined compression stress-relaxation tests were performed on poly-2-hydroxyethyl methacrylate (pHEMA) hydrogels with a range of cross-linker concentrations. The nanoindentation data were analyzed with the Oliver-Pharr elastic model and the MaxwellWiechert (j = 2) viscoelastic model. The unconfined compression data were analyzed with the Maxwell-Wiechert model. This viscoelastic model provided an excellent fit for the stress-relaxation curves from both tests. The time constants from nanoindentation and unconfined compression were significantly different, and we propose that these differences are due to differences in equilibration time between the microscale and macroscale experiments and in sample geometry. The MaxwellWiechert equilibrium modulus provided the best agreement between nanoindentation and unconfined compression. Also, both nanoindentation analyses showed an increase in modulus with each increasing cross-linker concentration, validating that nanoindentation can discriminate between similar, low-modulus, hydrated samples.
We describe a new class of biomaterials with potential for a variety of applications in tissue engineering, wound healing, and transdermal drug delivery. These materials are based on oleic methyl ester (OME), which is derived from various plant oils including soybean oil. The OME was acrylated (AOME) and subsequently copolymerized with methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) to form pressure sensitive adhesives (PSAs). We assessed the cytocompatibility of each PSA product using Alamar Blue and Live/Dead assays. It was found that after 2 h, human fibroblast cells attached on all four of the PSA polymers tested. After 24 h, cell spreading was seen on all materials with the exception of the polymerized AOME product (PAOME). Cells attached to the copolymer PSA products continued to proliferate for up to 2 weeks, as shown by fluorescent confocal microscopy imaging. Finally, a mechanical analysis of each of the copolymers is presented demonstrating that they have a range of mechanical properties and cell adhesiveness depending on the formulation, making them attractive candidates for use as bioactive adhesives.
Copolymers of (2-hydroxyethyl methacrylate) (HEMA) and methacrylamide monomers conjugated with amino acids were synthesized and crosslinked with ethylene glycol dimethacrylate. The resulting library of copolymers was mineralized in vitro using two distinct methods. In the first mineralization method, the copolymers were polymerized in the presence of a sub-micron hydroxyapatite (HA) suspension. In the second method, copolymers were mineralized with HA using a urea-mediated process. The mechanical properties of all of the copolymers, both mineralized and not, were determined using nanoindentation under both load and displacement control. A power law fit to the initial unloading curve was used to determine a reduced elastic modulus for each material. Between 30 and 300 indentations were performed on each material, and ANOVA analysis was run to determine the statistical significance of differences in modulus between samples. Using nanoindentation, the 22 different samples had reduced modulus values ranging from 840 MPa to 4.14 GPa. Aspartic acid-methacrylate (Asp-MA) copolymers were not distinguishable from the pHEMA control material. Polymerization in the presence of HA created a more uniform material than the urea method of mineralization. Several challenges and solutions encountered in the nanomechanical testing of soft, heterogeneous materials are discussed. These results demonstrate that with proper experimental design, the mechanical properties of tissue engineering scaffold materials based on polymer-ceramic composite materials can be determined using small samples and nanoindentation techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.