Central aspects of emotional experiences are often well remembered at the expense of background details. Previous studies have focused on memory after brief delays, but little is known about how these components of emotional memories change over time. Here we investigated the evolution of negative scene memories across 30 minutes, 12 daytime hours spent awake, or 12 nighttime hours including sleep. Negative objects were well remembered at the expense of their backgrounds after 30min. Time spent awake led to forgetting of the entire negative scene, with both objects and their backgrounds decaying at similar rates. Sleep, on the other hand, led to a preservation of negative objects, but not their backgrounds, suggesting that the two components undergo differential processing during sleep. Negative scene memories develop differentially across time delays containing sleep and wake, with sleep selectively consolidating those aspects of a memory that are of greatest value to the organism.
Relational memory, the flexible ability to generalize across existing stores of information, is a fundamental property of human cognition. Little is known, however, about how and when this inferential knowledge emerges. Here, we test the hypothesis that human relational memory develops during offline time periods. Fifty-six participants initially learned five ''premise pairs'' (A>B, B>C, C>D, D>E, and E>F). Unknown to subjects, the pairs contained an embedded hierarchy (A>B>C>D>E>F). Following an offline delay of either 20 min, 12 hr (wake or sleep), or 24 hr, knowledge of the hierarchy was tested by examining inferential judgments for novel ''inference pairs'' (B>D, C>E, and B>E). Despite all groups achieving near-identical premise pair retention after the offline delay (all groups, >85%; the building blocks of the hierarchy), a striking dissociation was evident in the ability to make relational inference judgments: the 20-min group showed no evidence of inferential ability (52%), whereas the 12-and 24-hr groups displayed highly significant relational memory developments (inference ability of both groups, >75%; P < 0.001). Moreover, if the 12-hr period contained sleep, an additional boost to relational memory was seen for the most distant inferential judgment (the B>E pair; sleep ؍ 93%, wake ؍ 69%, P ؍ 0.03). Interestingly, despite this increase in performance, the sleep benefit was not associated with an increase in subjective confidence for these judgments. Together, these findings demonstrate that human relational memory develops during offline time delays. Furthermore, sleep appears to preferentially facilitate this process by enhancing hierarchical memory binding, thereby allowing superior performance for the more distant inferential judgments, a benefit that may operate below the level of conscious awareness.association ͉ inference ͉ learning ͉ offline
Sleep spindle activity has been associated with improvements in procedural and declarative memory. Here, for the first time, we looked at the role of spindles in the integration of newly learned information with existing knowledge, contrasting this with explicit recall of the new information. Two groups of participants learned novel spoken words (e.g., cathedruke) that overlapped phonologically with familiar words (e.g., cathedral). The sleep group was exposed to the novel words in the evening, followed by an initial test, a polysomnographically monitored night of sleep, and a second test in the morning. The wake group was exposed and initially tested in the morning and spent a retention interval of similar duration awake. Finally, both groups were tested a week later at the same circadian time to control for possible circadian effects. In the sleep group, participants recalled more words and recognized them faster after sleep, whereas in the wake group such changes were not observed until the final test 1 week later. Following acquisition of the novel words, recognition of the familiar words was slowed in both groups, but only after the retention interval, indicating that the novel words had been integrated into the mental lexicon following consolidation. Importantly, spindle activity was associated with overnight lexical integration in the sleep group, but not with gains in recall rate or recognition speed of the novel words themselves. Spindle activity appears to be particularly important for overnight integration of new memories with existing neocortical knowledge.
Memories are not stored as exact copies of our experiences. As a result, remembering is subject not only to memory failure, but to inaccuracies and distortions as well. Although such distortions are often retained or even enhanced over time, sleep's contribution to the development of false memories is unknown. Here, we report that a night of sleep increases both veridical and false recall in the DeeseRoediger-McDermott (DRM) paradigm, compared to an equivalent period of daytime wakefulness. But while veridical memory deteriorates across both wake and sleep, false memories are preferentially preserved by sleep, actually showing a non-significant improvement. The same selectivity of false over veridical memories was observed in a follow-up nap study. Unlike previous studies implicating deep, slow-wave sleep (SWS) in declarative memory consolidation, here veridical recall correlated with decreased SWS, a finding that was observed in both the overnight and nap studies. These findings lead to two counterintuitive conclusions -that under certain circumstances sleep can promote false memories over veridical ones, and SWS can be associated with impairment rather than facilitation of declarative memory consolidation. While these effects produce memories that are less accurate after sleep, these memories may, in the end, be more useful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.