Introductionβ-alanine (BAl) and NaHCO3 (SB) ingestion may provide performance benefits by enhancing concentrations of their respective physiochemical buffer counterparts, muscle carnosine and blood bicarbonate, counteracting acidosis during intense exercise. This study examined the effect of BAl and SB co-supplementation as an ergogenic strategy during high-intensity exercise.MethodsEight healthy males ingested either BAl (4.8 g day−1 for 4 weeks, increased to 6.4 g day−1 for 2 weeks) or placebo (Pl) (CaCO3) for 6 weeks, in a crossover design (6-week washout between supplements). After each chronic supplementation period participants performed two trials, each consisting of two intense exercise tests performed over consecutive days. Trials were separated by 1 week and consisted of a repeated sprint ability (RSA) test and cycling capacity test at 110 % Wmax (CCT110 %). Placebo (Pl) or SB (300 mg kgbw−1) was ingested prior to exercise in a crossover design to creating four supplement conditions (BAl-Pl, BAl-SB, Pl–Pl, Pl-SB).ResultsCarnosine increased in the gastrocnemius (n = 5) (p = 0.03) and soleus (n = 5) (p = 0.02) following BAl supplementation, and Pl-SB and BAl-SB ingestion elevated blood HCO3− concentrations (p < 0.01). Although buffering capacity was elevated following both BAl and SB ingestion, performance improvement was only observed with BAl-Pl and BAl-SB increasing time to exhaustion of the CCT110 % test 14 and 16 %, respectively, compared to Pl–Pl (p < 0.01).ConclusionSupplementation of BAl and SB elevated buffering potential by increasing muscle carnosine and blood bicarbonate levels, respectively. BAl ingestion improved performance during the CCT110 %, with no aggregating effect of SB supplementation (p > 0.05). Performance was not different between treatments during the RSA test.
The Black Soldier Fly (BSF) offers the potential to address two global challenges; the environmental detriments of food waste and the rising demand for protein. Food waste digested by BSF larvae can be converted into biomass, which may then be utilized for the development of value-added products including new food sources for human and animal consumption. A systematic literature search was conducted to identify studies investigating the influence of food waste rearing substrates on BSF larvae protein composition. Of 1712 articles identified, 23 articles were selected for inclusion. Based on the results of this review, BSF larvae reared on ‘Fish waste Sardinella aurita’ for two days reported the highest total protein content at 78.8% and BSF larvae reared on various formulations of ‘Fruit and vegetable’ reported the lowest protein content at 12.9%. This review is the first to examine the influence of food waste on the protein composition of BSF larvae. Major differences in larval rearing conditions and methods utilized to perform nutritional analyses, potentially influenced the reported protein composition of the BSF larvae. While this review has highlighted the role BSF larvae in food waste management and alternative protein development.
Background: Combining the key adaptation of plasma volume (PV) expansion with synergistic physiological effects of other acclimation interventions to maximise endurance performance in the heat has potential. The current study investigated the effects of heat acclimation alone (H), combined with normobaric hypoxia exposure (H+NH), on endurance athletic performance. Methods: Well-trained participants completed a heat-stress trial (30 °C, 80% relative humidity (RH), 20.8% fraction of inspired oxygen (FiO2)) of a 75 min steady-state cycling (fixed workload) and a subsequent 15 min cycling time trial for distance before and after intervention. Participants completed 12 consecutive indoor training days with either heat acclimation (H; 60 min·day−1, 30 °C, 80% RH; 20.8% FiO2) or heat acclimation and overnight hypoxic environment (H+NH; ~12 h, 60% RH; 16% FiO2 simulating altitude of ~2500 m). Control (CON) group trained outdoors with average maximum daily temperature of 16.5 °C and 60% RH. Results: Both H and H+NH significantly improved time trial cycling distance by ~5.5% compared to CON, with no difference between environmental exposures. PV increased (+3.8%) and decreased (−4.1%) following H and H+NH, respectively, whereas haemoglobin concentration decreased (−2%) and increased (+3%) in H and H+NH, respectively. Conclusion: Our results show that despite contrasting physiological adaptations to different environmental acclimation protocols, heat acclimation with or without hypoxic exposure demonstrated similar improvements in short-duration exercise performance in a hot environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.